INTERACTION OF SOME FUNGAL ENTOMOPATHOGENS OF RICE PESTS WITH PHYLLOPHYTIC MICROORGANISMS OF FOUR RICE GENOTYPES CULTIVATED IN COASTAL ODISHA, INDIA

Biswajit Sahoo and Tushar Kanti Dangar*
Microbiology Laboratory, Crop Production Division
ICAR-National Rice Research Institute, Cuttack, Pin-753006, Odisha, India
*Email: tkdangar@gmail.com

ABSTRACT
Interactions of six entomopathogenic fungi viz. Cordyceps (2 strains), Beauveria (1 strain) and Metarhizium (3 strains) spp. of rice leaf folder (LF, Cnaphalocrocis medinalis) with the phyllophytic (phyllospheric and phylloplanic) bacteria (n=35) and fungi (n=4) isolated at pre-flowering stages of four cultivated rice (Oryza sativa L.) var. Lalat, Swarna, Swarna-Sub1 and Naveen were assessed to reveal possibility of intergroup inhibition in the field. Dynamics of the phyllophytic microbes revealed that the phyllospheric bacterial population (3.59 to 4.10 log CFU/cm²) was more than those of the phylloplane (1.56 to 1.75 log CFU/cm²) of different plants. The phyllophytes of the four rice genotypes decreased in the order of Swarna-Sub1 > Swarna > Lalat > Naveen. The fungal pathogens of LF viz. C. brongniartii (TF6 and TF6-1A), B. bassiana (TF6-1B) and M. anisopliae (TF19, TF19-3A and TF19-3B) were not inhibited by any of the phyllophytic organisms which proved that they can be applied on the canopy of the rice plants to control the pests.

Key words: Entomopathogenic fungi, Interaction, Leaf folder, Rice phyllophytes.

INTRODUCTION
Among the microbial pathogens such as bacteria, virus, fungi and protozoa of the insect pests, the fungal pathogens are earlier but lesser emphasized pathogenic bioagents (Krattiger 1997). In the field, interactions of the abiotic factors like UV radiation, temperature, rainfall, humidity, and the biotic factors like microbes with synergistic or antagonistic effect would cause the inconsistent infectivity, survival and persistence of the biopesticides (Villani et al. 1992). Therefore, analysis of interaction of the entomopathogenic fungi with the epiphytic organisms is essential prior to application of the biopesticides which has not yet been investigated for the rice entomopathogens.

Phyllophytic, i.e., phyllospheric (loosely attached microbial community of leaves) and phylloplanic (firmly attached microbial community of leaves) bacteria and fungi are important for agricultural and environmental functionality as they can affect ecological balance, plant growth,
suppress or stimulate colonization and infection of the plant pathogens (Lindow and Brandl 2003, Rasche et al. 2006). However, diversity and dynamics of the phyllophytic bacterial populations vary among and within different crop species, growth period and leaf ages (Kinkel et al. 1995, Yadav et al. 2004, Lambais et al. 2006, Yadav et al. 2011). Evidently, Mwajita et al. (2013) recorded 77 phyllospheric, 119 rhizoplanic and 54 rhizospheric plant growth promoting (PGP) bacteria and fungi from Kenyan rice and the leaf imprints which showed that the epiphytic microbes are not distributed uniformly across the leaf surfaces (McCaig et al. 1999). Nevertheless, collate information showed that, like other habitats, phyllospheric and phylloplanic microbial community analysis is a complex proposition, and despite culture independent molecular and community physiology analysis would comprehend overall diversity of the microbes (Garland et al. 2001, Preston-Mafhan et al. 2002, Yadav et al. 2008) but culture methods (solid and broth culture, leaf imprints etc.) are essential for analysis of microbial functions and interactions of different habitats (Ritz 2007, Yadav et al. 2010).

Entomopathogenic fungi have been used against a broad range of insect pests (Lacey et al. 2001, Ansari et al. 2004) and the Beauveria and Metarhizium spp. are established pathogens of rice leaf folder (LF), Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae) (Dangar 1998, Sahoo et al. 2013) which is a major yield-limiting factor of rice. Resident microbes would interfere with the biocides which are generally used externally, their interactions with the phyllophytic organisms should be evaluated to ascertain their success for sustainable rice production. As the epiphytic microbes have PGP properties, it is desirable that biocides should not displace the resident microbiome also (Cook et al. 1996). The interactions of the entomopathogens with phyllophytic organisms of rice and vice versa have not been studied to date. Therefore, the study was undertaken to disclose the interactions of 3 virulent pathogens to LF viz. C. brongniartii, B. bassiana and M. anisopliae with the resident phyllophytic microbiota of four cultivated rice genotypes var. Lalat, Swarna, Swarna-Sub1 and Naveen.

MATERIALS AND METHODS

Selection of entomopathogens for the study

The entomopathogenic fungi viz. Cordyceps (anamorph Beauveria), Beauveria, Metarhizium, Nomuraea, Fusarium, Verticillium, Trichoderma and Paecilomyces spp. were isolated from naturally infected rice (Oryza sativa L.) insect pest including the leaf folder (LF, C. medinalis) larvae (Sahoo et al. 2013). Virulence of the pathogens were assessed and the six selected effective and virulent (infected > 50% LF larvae in the laboratory and net house) pathogens of LF viz. C. brongniartii (TF6 and TF6-1A), B. bassiana (TF6-1B) and M. anisopliae (TF19, TF19-3A and TF19-3B) (Sahoo et al. 2013) which were subsequently genotyped using ITS 1, 4 sequencing to confirm phenotypic identification.

Isolation, characterization and identification of the phyllophytic organisms

The phyllophytic (phyllospheric and phylloplanic) organisms (bacteria and fungi) were isolated from four cultivated rice (Oryza sativa L.) var. Lalat, Swarna, Swarna-Sub1 and Naveen of different growth duration and water regimen (hydrology) for cultivation (Table 1). The phyllospheric and phylloplanic microbes were isolated by dilution plating and leaf imprint methods, respectively (Aneja 2003, Yadav et al. 2010). Ten uninfested and healthy apical leaves were collected from each variety at panicle initiation stage (pre-flowering stage), cut into 5 cm long pieces and rinsed 10-15 times with tap water
followed by sterilized (autoclaved in 1.1 kg/cm² pressure at 121 ± 0.1°C for 15 min) double distilled water under a laminar air flow hood to remove externally loosely attached dusts and microbes. To estimate the phyllospheric microbes, one of the leaf pieces was aseptically cut into 5 × 1 cm pieces and put in a conical flask (100 ml) with 10 ml sterilized distilled water containing 0.001% tween 80, 0.1 M MgSO₄ and 0.15% glycerine; incubated for 12 h on a rotary shaker at 80±1 rpm at 37 ± 0.1°C. 1 ml of each leaf wash was mixed separately with each of 100 ml nutrient agar, NA (g/l: peptone 5, beef extract 1, yeast extract 2, NaCl 5, agar 15, pH 7.4) for bacteria and potato dextrose agar, PDA (g/l: potato infusion 200, dextrose 20, agar 15, pH 5.6) for fungi, plated separately in five petridishes and incubated in a BOD incubator at 30 ± 0.1°C. To estimate the phylloplanic microbes, the leaf pieces (1 cm length × 1-2 cm width) were taken out from the flasks, blotted to dryness on sterile blotting papers, washed 3 times with sterile distilled water, blotted the excess water to dryness and each surface of a leaf piece was held pressed alternatively for 2 h on separate places on a NA plate, as well as, similar impressions of another leaf piece were taken on PDA plates. The leaf pieces were removed from the plates and incubated in a BOD (biological oxygen demand) incubator at 30 ± 0.1°C. Each experiment was repeated 3 times taking three leaf pieces for each media. Different colonies grown from leaf washes (phyllospheric microbes) and along the imprints (phylloplanic microbes) were isolated, purified and the bacteria and fungi were preserved on NA or PDA slants, respectively, at 4 ± 0.1°C.

The microbial populations (bacteria and fungi) were enumerated by dilution plating of the leaf washes and leaf imprints, and expressed as log colony forming units (CFU) /cm² leaf (Yadav et al. 2004). For the leaf imprints, the CFUs on adaxial and abaxial leaf surfaces were added to calculate the total bacterial population on the phylloplane. The population data were analyzed by ANOVA (Table 3) with errors of the means of three replications. The phyllophytic bacteria and fungi were phenotyped by cultural (colony), morphological, staining (cellular characters were observed under 40-100X LM) and biochemical character grown on NA and PDA. The bacteria (Smibert and Krieg 1994) and fungi (Samson et al. 1988) were tentatively identified following standard identification protocols. Fluorescence pigment production by the bacteria was checked under a 312 nm UV lamp.

Table 1. Hydrology and duration of growth.

<table>
<thead>
<tr>
<th>Rice variety</th>
<th>Hydrology of cultivation</th>
<th>Total growth duration (d)</th>
<th>PI stage period (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lalat</td>
<td>Irrigated land, water depth ≤ 30 cm</td>
<td>125</td>
<td>100-105</td>
</tr>
<tr>
<td>Swarna</td>
<td>Rainfed shallow lowland, water depth ≥ 30 cm</td>
<td>145</td>
<td>115-120</td>
</tr>
<tr>
<td>Swarna-Sub1</td>
<td>Rainfed shallow flooded, submerged land, water depth ≥ 30 cm</td>
<td>145</td>
<td>115-120</td>
</tr>
<tr>
<td>Naveen</td>
<td>Irrigated, medium/up land, water depth ≤ 30 cm</td>
<td>120</td>
<td>90-95</td>
</tr>
</tbody>
</table>

*PI (panicle initiation) stage can vary from 3-5d depending on the season and environment, and the period indicates time scale of the growth phase.

Test for antagonism

Antagonism assay among the biocides and phyllophytes was carried out by co-culturing themon tryptose soya agar (TSA) medium (g/l: pancreatic digest of casein 15, papaic digest of...
soyabean meal 5, NaCl 5, agar 15, pH 7.3) (Ansari et al. 2005) with minor modification. The entomopathogenic fungi, i.e., two isolates each of M. anisopliae, B. bassiana and C. brongniartii were streaked along two parallel lines 1 cm away from opposite margins of the TSA plates (9 cm dia). The phytophagic bacteria were streaked along equidistant parallel lines perpendicularly between the streaks of two entomopathogenic fungi without touching the streaks (0.5 cm away the fungal streaks). The plates were incubated in a BOD incubator at 30 ± 0.1°C, growth of the organism was checked after 3-4 d and antagonism between the organisms was determined from inhibition of growth of the organisms. The inhibition of growth was measured by measuring the length and breadth of the colonies on co-culture plate comparing with the control, i.e., without co-culture.

RESULTS

Identification of the entomopathogenic fungi

The virulent fungal pathogens of the LF viz. TF6, TF6-1A and TF6-1B were phenotyped as Beauveria spp., TF19, TF19-3A and TF19-3B were phenotyped as Metarhizium spp. (Sahoo et al. 2013). Besides phenotyping, the ITS 1, 4 sequencing showed that the TF6 and TF6-1A as Cordycepsbrongniartii (NCBI Acc. No. JX122734 and JX122735) which is a teleomorph of B. bassiana and TF6-1B as B. bassiana (NCBI Acc. No. JX122736) (Table 2). The ITS 1, 4 phylogenetic characters of the three isolates, i.e., TF19, TF19-3A and TF19-3B identified them as Metarhiziumanisopliae (NCBI Acc. No. JX122737, JX122738 and JX122739, respectively) (Table 2).

Table 2. The phenotypic and genetic identity of the virulent entomopathogenic fungi of LF.

<table>
<thead>
<tr>
<th>Isolate No.</th>
<th>Cultural, morphological and spore character on PDA*</th>
<th>Phenotypic identity*</th>
<th>Genetic identity by ITS 1, 4 sequence (NCBI Acc.No.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF6</td>
<td>Colonies woolly white from upper and lower sides; conidiophores with cluster of short, ovoid and flask-shaped conidiogenous cells with narrow long zigzag filamentous extension (rachis) formed after each conidial attachment; conidia in chains single-celled, spherical, white, diameter 2.5-2.7 μm, and hydrophobic.</td>
<td>Beauveria bassiana</td>
<td>Cordycepsbrongniartii (JX122734)</td>
</tr>
<tr>
<td>TF6-1A</td>
<td>Colonies woolly white from upper and pale yellow from lower side; conidiophores and conidia same as TF6</td>
<td>B. bassiana</td>
<td>C. brongniartii (JX122735)</td>
</tr>
<tr>
<td>TF6-1B</td>
<td>Morphology same as TF6-1A</td>
<td>B. bassiana</td>
<td>B. bassiana (JX122736)</td>
</tr>
<tr>
<td>TF19</td>
<td>Colonies white woolly initially and became light green after sporulation from upper side and yellow-green from lower side of colony; the conidiophores erect with 2–3 repeated branches from each node; conidiogenous cells cylindrical and conidia (6-7.8) x (2.2-2.5) μm, green, cylindrical with a slight central constriction (groundnut shape)</td>
<td>Metarhiziumanisopliae</td>
<td>M. anisopliae (JQ766113)</td>
</tr>
<tr>
<td>TF19-3A</td>
<td>Morphology same as TF19 but more woolly growth than TF19; late sporulation than TF19</td>
<td>M. anisopliae</td>
<td>M. anisopliae (JX122738)</td>
</tr>
<tr>
<td>TF19-3B</td>
<td>Morphology same as TF19-3A</td>
<td>M. anisopliae</td>
<td>M. anisopliae (JX122739)</td>
</tr>
</tbody>
</table>

*Sahoo et al. 2013. Presented here for comparison
Phyllophytic microbial population density and diversity

The phyllophytic microbial pool population of the four rice varieties counted by serial dilution plating and leaf imprint methods are presented in Fig. 1. Populations of the phyllophytic (phyllospheric and phylloplanic) microbes varied significantly and the size of phyllospheric population was greater than that of phylloplanic ones (Table 3). Average phyllospheric bacterial population (estimated from leaf washes) was higher (4.10 log CFU/cm²) for Swarna-Sub1 and lower (3.59 log CFU/cm²) for Naveen, whereas, Swarna and Lalat leaves harboured intermediate levels of populations (3.92 and 3.81 log CFU/cm², respectively). Similarly, phylloplanic bacterial population (estimated from leaf imprint) was higher for Swarna-Sub1 (1.75 log CFU/cm²) and lower for Naveen (1.56 log CFU/cm²) and that of Swarna and Lal at attained intermediate population levels, i.e., 1.59 and 1.56 log CFU/cm², respectively. The phyllospheric microbial (bacteria and fungi) population among the 4 rice genotypes was significantly different, whereas, phylloplanic population among the rice genotypes was not significantly different (Table 3).

From the four rice varieties, 11 bacteria (a1-a11) and two fungi (f1 and f2) were isolated from Swarna, 11 bacteria (b1-b11) and one fungus (f3) were isolated from Lalat, 6 bacteria (c1-c6) and one fungus (f4) were isolated from Swarna-Sub1 and 7 bacteria (d1-d7) were isolated from Naveen (Tables 4 and 5). Among the isolates, a1, a2, a4, a5, b1, b5, b8, b9 and d7 produced pale/light creamy; a3 and a10 produced light yellow; b7 produced fluorescent yellow; d1 produced fluorescent green; a8, b2, b3, b4 and b11 produced off-white; a9, b10 and c2 produced yellow; b6 and d6 produced yellowish green and a6, a7, a11, c1, c3, c4, c5, c6, d2, d3, d4 and d5 produced white colonies on NA plates. The bacterial cell shapes varied from rod to oval and some (a1, a2, a4, a6, b1, b4, b9, c1, c4, c5, d2-d5 and d7) of them produced spores. The a1-a4, a6, b1, b4, b9, c1, c3-c5, c10, d2-d5 and d7 were Gram positive, whereas, remainder bacteria were Gram negative. Besides, b6, b7, d1 and d6 produced green fluorescence under the UV lamp grown on King’s B medium. Based on the phenotypic characters the bacteria were tentatively identified (Smibert and Krieg 1994) as Bacillus spp. (a1, a2, a4, a6, b1, b4, b9, c1, c4, c5, d2-d5 and d7), Pseudomonas spp. (b6, b7, d1 and d6) and a3, a5, a8- a11, b2, b3, b5, b8, b10, b11, c2, c3 and c6 remained unidentified (Table 4).

The phyllophytic fungi of the cultivars were few, i.e., only 3 genera (Table 5). The phenotypic identities (tentative) of leaf epiphytic fungi were Aspergillus spp., Penicillium spp. and Fusarium spp.

Table 3. Comparison of phyllophytic microbial populations using one-way ANOVA.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Source of variation</th>
<th>Sum of squares</th>
<th>d.f.</th>
<th>Mean square</th>
<th>F value</th>
<th>P value</th>
<th>F critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyllosphere</td>
<td>Between groups</td>
<td>0.407</td>
<td>3</td>
<td>0.136</td>
<td>4.966</td>
<td>0.031</td>
<td>4.066</td>
</tr>
<tr>
<td></td>
<td>Within groups</td>
<td>0.218</td>
<td>8</td>
<td>0.027</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0.625</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phylloplane</td>
<td>Between groups</td>
<td>0.077</td>
<td>3</td>
<td>0.026</td>
<td>3.091</td>
<td>0.089</td>
<td>4.066</td>
</tr>
<tr>
<td></td>
<td>Within groups</td>
<td>0.066</td>
<td>8</td>
<td>0.008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0.143</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. The phenotypic characters of phyllophytic bacterial isolates on NA plates.

<table>
<thead>
<tr>
<th>Isolate no.</th>
<th>Colony morphology on NA</th>
<th>Cell shape</th>
<th>Motility</th>
<th>Spore</th>
<th>Gram stain</th>
<th>On UV</th>
<th>Nearest Genus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1, a2, a4, a6, b1, b4, b9, c1, c4, c5, d2-d5, d7</td>
<td>Circular, pale yellow (a1), white (a7, c1, c4, c5, d2, d4), pale/light cream (a2, a4, a6, b1, b9, d5, d7), off white (b4, d3)</td>
<td>Oval (b1, b9, d4, d7), rods (others)</td>
<td>Non motile (a2, a4, b9, d3, d5, d7), motile (others)</td>
<td>Produced</td>
<td>+ve, NF</td>
<td>Bacillus spp.</td>
<td></td>
</tr>
<tr>
<td>b6, b7, d1, d6</td>
<td>Amoeboid, yellowish-green (b6, d6), diffused green (d1), diffused, fluorescent-yellow (b7)</td>
<td>Rod</td>
<td>Motile</td>
<td>Not produced</td>
<td>-ve, F</td>
<td>Pseudomonas spp.</td>
<td></td>
</tr>
<tr>
<td>a3, a5, a8-11, b2, b3, b5, b8, b10, b11, c2, c3, c6</td>
<td>Circular, light yellow (a3, a5, a9, a10, c3), off white (a8, b2, b3, c6) spreading off white (a11, b11) very small, pale/light cream (b5 b8) and yellow (b10, c2)</td>
<td>Rod (a8, a11, b2, b3, b8, c6, b11), oval (others)</td>
<td>Non motile (a9, a10, b3, b8, c2, b11), motile (others)</td>
<td>Produced (a5, a9, b5, b10, c2)</td>
<td>+ve (a3, c3, a10), -ve (others)</td>
<td>Unidentified</td>
<td></td>
</tr>
</tbody>
</table>

F = fluorescent and NF = non-fluorescent

Table 5. The phenotypic characters of phyllophytic fungal isolates on PDA plates.

<table>
<thead>
<tr>
<th>Isolate no.</th>
<th>Cultural, morphological and spore character on PDA</th>
<th>Nearest Genus</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1 and f4</td>
<td>Upper side of the colony white, lower side yellow, dark brown at sporulation, conidiophores terminate in a vesicle covered with metulae which bear small whorls of phialides. Conidia are single celled, hyaline and formed long chains which aggregated in compact columns (columnar).</td>
<td>Aspergillus spp.</td>
</tr>
<tr>
<td>f2</td>
<td>Fast growing dark green colonies from upper side, consisting of dense conidiophores, chains of single-celled conidia produced from conidiogenous cells (phialide) which were produced from branched metulae, brush-like appearance. Conidia ellipsoidal or spherical, greenish, smooth.</td>
<td>Penicillium spp.</td>
</tr>
<tr>
<td>f3</td>
<td>Colony wooly, whitish to light-pink from upper side, conidiophores short, simple, bearing apical conidiogenous cells (phialides) which were cylindrical to much elongated, macroconidia canoe-shaped, hyaline, 2-5 celled, fusiform to sickle-shaped and number increased at maturity, microconidia 1-2 celled, ovoid.</td>
<td>Fusarium spp.</td>
</tr>
</tbody>
</table>

Interaction of entomopathogens with epiphytic organisms

Interactions of the entomopathogens with phyllophytic organisms are given in Table 6. Interactions depicted inhibition of growth of a5 by TF19-3B; a6, d4 and d5 by TF6, TF6-1A, TF6-1B, TF19 and TF19-3A; a8 and a10 by TF19; f2 by TF6-1B; and f3 by TF6-1B, TF19 and TF19-3A (Fig. 2, Table 6). However, growth of the six effective fungal entomopathogens was also intermediately inhibited by the phyllophytes a3, a11, b6, c4, c6, d1, d6 and f1 only (Fig. 2, Table 6). But the entomopathogens did not inhibit growth of both phyllospheric and phylloplanic microbes except for a6, d4, d5 and f3 (Table 6).

Fig. 2. Representative photograph of interaction between entomopathogens (e) and phyllophytes (p):
(a) No inhibition of either entomopathogens or phyllophytes,
(b) intermediate inhibition of entomopathogens,
(c) inhibition and intermediate inhibition of phyllophytes.
Table 6. Interaction of the phyllophytes and entomopathogenic fungi.

<table>
<thead>
<tr>
<th>Test organism</th>
<th>Effect on growth of the organism (given are the isolate numbers)</th>
<th>Zero inhibition</th>
<th>Intermediate inhibition</th>
<th>Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF6</td>
<td>a1, a3, a4, a7, a9-a11, b1-b7, b9-b11, c1, c2, c4-c6, d1-d3, d6, f1, f3</td>
<td>a5, a8, b2, f2, f4</td>
<td>a2, a6, c3, d4, d5</td>
<td></td>
</tr>
<tr>
<td>TF6-1A</td>
<td>a3, a7, a9-a11, b1-b11, c4-c6, d1-d3, d6, f1, f3</td>
<td>a1, a2, a4, a5, a8, c1-c3, d7, f2, f4</td>
<td>a6, d4, d5</td>
<td></td>
</tr>
<tr>
<td>TF6-1B</td>
<td>a1, a3, a4, a9-a11, b1-b4, b6-b11, c1, c2, c4-c6, d1, d3, d6, d7, f1, f4</td>
<td>a2, a5, a7, a8, b5, c3, d2</td>
<td>a6, d4, d5, f2, f3</td>
<td></td>
</tr>
<tr>
<td>TF19</td>
<td>a1-a3, a5, a7, a11, b1-b4, b6-b11, c1, c3-c6, d1-d3, d6, d7, f1</td>
<td>a4, a9, b5, c2, d7, f2, f4</td>
<td>a6, a8, a10, d4, d5, f3</td>
<td></td>
</tr>
<tr>
<td>TF19-3A</td>
<td>a1-a3, a5, a7, a9-a11, b1-b8, b10, b11, c1, c3-c6, d1-d3, d6, d7, f1</td>
<td>a4, a8, b9, c2, d6, d7, f2, f4</td>
<td>a6, d4, d5, f3</td>
<td></td>
</tr>
<tr>
<td>TF19-3B</td>
<td>a2, a3, a9-a11, b1-b4, b7-b11, c3-c6, d1, d3, d6, f1</td>
<td>a1, a4, a6-a8, b5, b6, c1, c2, d2, d4, d5, d7, f2-f4</td>
<td>a5</td>
<td></td>
</tr>
</tbody>
</table>

a1, a2, a4-a10, b1, b3, b4, b7, b9-b11, c1-c3, c5, d2-d5, d7, f3	All entomopathogens had normal growth	Nil	Nil
a3, b6, c4	TF6, TF6-1A, TF6-1B, TF19-3A	TF19, TF19-3B	Nil
a11, c6	TF19-3B	All entomopathogen except TF19-3B had intermediate inhibition	Nil
b2, f2	All entomopathogens except TF19 had normal growth	TF19	Nil
b5	All entomopathogens except TF19-3B had normal growth	TF19-3B	Nil
b8	All entomopathogens except TF19-3A had normal growth	TF19-3A	Nil
f4	All entomopathogens except TF6-1B had normal growth	TF6-1B	Nil
d1, d6, f1	Nil	All entomopathogens had intermediate inhibition	Nil

DISCUSSION

The results of phyllophytic microbes indicated that, like the microbial population density and type of different other habitats, phyllophytic microbes were also variable among the rice genotypes, but they did not follow similar trends among the cultivars. For example, Swarna-Sub1 harboured more bacteria but types of microbes were lesser (6 bacteria and 1 fungus) than Swarna (11 bacteria and 2 fungi), whereas, the population size and diversity of microbial load were comparable for other two cultivars (Lalat and Naveen). The results
indicated that support of the plants on the resident phyllophytic microbes is complex and it would probably depend on the nutrition supply by the plants, interactions among the phyllophytes and the environmental factors. Only 3 genera of the phyllophytic fungi could be obtained from the 4 rice cultivars on PDA media which indicated that the culture medium would not support all epiphytic fungi which dependent on the nutritional support from the plants. Alike the present study (Table 5), several similar or more epiphytic fungi (39 isolates) including *Penicillium*, *Aspergillus*, *Trichoderma*, *Eupenicillium*, *Isaria*, *Leptosphaerulina*, *Hypocrea* and *Fusarium* spp. were recorded from Kenyan rice (Mwajita et al. 2013). Naveen (irrigated, medium/up land variety) had lower phyllospheric and phylloplanic microbial population, while Swarna-Sub1 (rainfed shallow lowland and flooded, submergence tolerant variety) had higher phyllospheric and phylloplanic populations. The results proved that phyllophytic microbial load vary widely among the rice cultivars and microbial load would be lesser on the genotypes of shorter growth period, i.e., there grown in drier cropping habitat, i.e., lesser water (moisture) regime. Wide variations of the phyllophytic microbes of four cultivated rice genotypes supported De Costa et al. (2006) who observed significant variation of total epiphytic microbial (bacteria and fungi) populations ranging from (0.591 to 14.976) × 10^7 CFU/cm^2 on fifteen traditional and high-yielding rice varieties grown in Srilanka under both planthouse and field conditions. However, microbial population of the Srilanka cultivars was similar in both high yielding and traditional varieties, but diversity of microbes was more in traditional rice varieties than high-yielding varieties (De Costa et al. 2006).

The natural entomofungal pathogens which could infect > 50% LF were planned to be used for mass production and formulation. Therefore, their interactions with the phyllophytes were assessed to understand the possible effects of the pathogens with the phyllophytes and *vice versa*. The interactions among the entomopathogens and phyllophytic organisms was not always antagonistic except for a few cases like inhibition of the a2, a5, a6, a8, a10, c3, d4, d5, f2 and f3 by the pathogens. The results supported the postulate that the entomopathogens might not inhibit all the epiphytic microbes (Cook et al. 1996) and *vice versa*. Zhang et al. (2008) did not find significant effect of the biological control agent, *Bacillus thuringiensis*, on the phyllospheric microbial community and biomass of pepper. The findings of the study favoured Sylla et al. (2013) who observed no significant negative impact of the biocontrol agents viz. *B. amyloliquefaciens*, *Tricoderma harzianum* and *B. bassiana* on the phyllophytic microbial diversity of strawberry, i.e., the antimicrobial secondary metabolites of the entomopathogenic fungi (*Beauveria, Fusarium, Gliocladium, Metarhizium, Paecilomyces* and *Verticillium* spp.) would not have antimicrobial properties against all microbes (Amiri et al. 1999, Kershaw et al. 1999, Strasser et al. 2000, Vey et al. 2001).

As growth of most of the phyllophytic organisms was not inhibited by the fungal entomopathogens and growth of the entomopathogenic fungi (*Beauveria, Codycepes* and *Metarhizium* spp.) was not inhibited by the leaf epiphytic bacteria and fungi therefore, the results suggested that the pathogens can be used as effective biocontrol agents against the target pests without affecting or nominally affecting the natural microbial diversity of the rice phyllosphere system.

ACKNOWLEDGEMENT

This work was funded by Indian Council of Agricultural Research (ICAR) under the project “Application of microorganisms in agriculture and allied sector (AMAAS, No. 6-2/2005/Dir/NBAIM 19.07.2006. The authors, therefore, acknowledge with thanks ICAR for the financial support.
REFERENCES

Amiri, B., L. Ibrahim and T.M. Butt. 1999. Anti-
feedant properties of destruxins and their use
with the entomopathogenic fungi
Metarhizium anisopliae for improved control of
crucifer pests. Biocontrol Science and

Aneja, K.R. 2003. Experiments in Microbiology,
Plant Pathology and Biotechnology. New Age
International (P) Ltd., New Delhi, India.

Antagonism between entomopathogenic fungi
and bacterial symbionts of entomopathogenic

Ansari, M.A., L. Tirry, S. Vestergaard and M.
Moens. 2004. Selection of a highly virulent
fungal isolate, Metarhizium anisopliae CLO
53, for controlling Hopliaphilanthus. Journal
of Invertebrate Pathology 85(2):89-96.

Cook, J., W.L. Bruckart, J.R. Coulson, M.S.
Goettel, R.A. Humber, R.D. Lumsden and J.L.
Vaughn. 1996. Safety of microorganisms
intended for pest and plant disease control: A
framework for scientific evaluation. Biological
Control 7(3):333-351.

stem borer, brown plant hopper and leaf
folder. Journal of Applied Zoological
Research 9:42-43.

De Costa, D.M., R.M.P.S. Rathnayake, W.A.J.M.
De Costa, W.M.D. Kumari and D.M.N.
Dissanayake. 2006. Variation of phyllosphere
microflora of different rice varieties in Sri
Lanka and its relationship to leaf anatomical
and physiological characters. Journal of

Relative effectiveness of kinetic analysis vs
single point readings for classifying
environmental samples based on community-
level physiological profiles (CLPP). Soil
Biology and Biochemistry 33(7):1059-1066.

Kershaw, M.J., E.R. Moorhouse, R. Bateman, S.E.
Reynolds and A.K. Charnley. 1999. The role
of destruxins in the pathogenicity of
Metarhizium anisopliae for three species of
insects. Journal of Invertebrate Pathology
74(3):213-223.

Effects of scale on estimates of epiphytic
bacterial populations. Microbial Ecology

Krattiger, A.F. 1997. Insect Resistant Crops: A
Case Study of Bacillus thuringiensis (Bt) and
Its Transfer in Developing Countries. ISAAA
Briefs. pp. 1-42.

2001. Insect pathogens as biological control
agents: Do they have a future. Biological

and R.R. Rodrigues. 2006. Bacterial diversity
in tree canopies of Atlantic forest. Science
312:1917-1917.

Microbiology of the phyllosphere. Applied and
Environmental Microbiology 69(4):1875-
1883.

Molecular analysis of bacterial community
structure and diversity in unimproved and
improved grass pastures. Applied and
Environmental Microbiology 65(4):1721-
1730.

Mwajita, M.R., H. Murage, A. Tani and E.M.
Kahangi. 2013. Evaluation of rhizosphere,
rhizoplane and phyllosphere bacteria and fungi
isolated from rice in Kenya for plant growth

Preston-Mafham, J., L. Boddy and P.F. Randerson.
2002. Analysis of microbial community
functional diversity using sole-carbon source
utilization profiles—a critique. FEMS

