Diversity, Utilization and Management of Medicinal Plants in Baitadi and Darchula Districts, Far West Nepal

Ripu M. Kunwar¹, Chotte L. Chowdhary² & Rainer W. Bussmann³

Abstract

As in other districts of Nepal, medicinal plants have played a significant role in the life of local people of Baitadi and Darchula districts by providing products for trade, subsistence and traditional therapies. Present study analyzed the pharmacological activities of the species which had the highest informant consensus factor. The use of Asparagus racemosus as galactogogue with consensus factor 0.97, Berberis asiatica for eye troubles with 1.0, Cordyceps sinensis as tonic and longevity with 0.97, Curculigo orchoides as tonic and aphrodisiac with 0.96, Nardostachys grandiflora for epilepsy with 0.97 and Phyllanthus emblica as diuretic with 0.97 possessed the highest consensus factors and greatest affinity to the Ayurveda and phytochemical findings. Phytochemical screening and validity assessments of the medicinal plant widely used in traditional therapies are worthwhile. The findings with the maximum affinity of informant consensus factors and phyto-chemical validations provide the potential to identify which plants are most likely to be useful in the treatment of diseases.

Key Words: Medicinal plants, Ethno-medicine, Informant consent factor (ICF), Phyto-chemical validation, West himalaya

Introduction

It has been estimated that the Himalayan region harbors about 12,000 species of medicinal and aromatic plants, supporting the livelihood of about 600 million people living in the area (Pie Shengji 2001). The flora of the Nepal Himalaya contains 10,167 plant species, of which over 7,000 are flowering plants and over 1,600 species are medicinal and aromatic herbs. The herbs, representing about 25% of the total country’s vascular flora, are used under different traditional systems including the Ayurveda, Homeopathic, Home herbal (folklore) and Amchi (traditional Tibetan medicine) medicinal systems (Bhattarai 1997). Thirty percent medicinal plant species of the country occur in the western part of the country (Manandhar 1998) and about 50% of the plants used as ethno-medicine in Nepal Himalaya (Kunwar et al. 2008) have been documented. The management of medicinal and aromatic plants and knowledge of utilization of the resources therefore is of great importance and it can be promoted by considering and documenting the diversity of the medicinal plant resources and their indigenous knowledge of utilization (Kunwar et al. 2006).

¹ Centre for Biology Conservation, P.O. Box 19225, Kathmandu, Nepal, rkunwar@gmail.com
² Canadian Center for International Studies and Cooperation (CECI), Kathmandu, Nepal
³ William L. Brown Center, Missouri Botanical Garden, St. Louis, USA.
Study Area

As there is varied topography, bioclimate and forest products (Devkota & Karmacharya 2003), both the Baitadi and Darchula districts possess a large variety of non-timber forest products and they have been collected since ancient past for domestic use, particularly for home herbal healing. Baitadi district ranges from 390 m to 2950 m altitude, 29° 22’ – 29° 57’ N latitude, and 80° 5’ – 80° 57’ E longitude, and Darchula district stretches from 357 m to 7132 m altitude, 29° 26’ - 30° 15’ N latitude and 80° 22’ - 81° 90’ E longitude. Community forests and their user groups, other government managed forests and NTFP collectors, traders and producers of Siddeswor VDC of Baitadi district and Khar and Dumling VDCs of Darchula districts were selected as study site and respondents for this study.

Because of the diversity and richness of the products in study area, some sites were community managed and some sites were government managed for better management. There is a belief of better management systems in community managed areas. Now, the forest lands lying at the vicinity of the settlement areas have been administered by local community and used the resources under indigenous management systems and customs and five years operational plans as community forests. Community forest user groups run under users’ forest operational plan and constitution and National Forest Act (1961, 1993) and they are recognized as an independent institution.

Materials and Methods

Field visits were carried out in January-February 2007 and March-April 2008 and field observations were analyzed to evaluate the diversity, uses and management of medicinal plant resources. Group discussions, field observations, questionnaire surveys, cross checking, and key informant surveys were major tools as participatory appraisal. Group discussions were held as informal interactions, meetings, formal discussions, etc. and they were organized within community forest user groups.

Traders, collectors, traditional healers and producers were individually asked. A total of 174 respondents including 122 men and 52 women were asked for data collection. All the traditional healers and village/district NTFP traders of the study area were consulted. Collectors were selected randomly with keeping diversity in gender, ethnicity and well being. Checklists were made for crosschecking and key informant survey. In total, the respondents for surveys were carefully selected based on gender, caste, occupation, ethnicity and well being. The information was further validated by common response and considered as insignificant for single response.

Results and Discussion

Diversity

The present study got an account of 76 plant species having medicinal values and properties. Among them 47 were indigenously used as ethno-medicine. Among the ethno-medicinal plants, 29 species were only from Darchula district, 19 were only from Baitadi district and 19 species were common to both districts. The high altitude medicinal herbs (Cordyceps sinensis,
Dactylorhiza hatagirea, Morchella conica, Nardostachys grandiflora, Neopicrorhiza scrophulariiflora, etc.) were reported from Darchula district while the tropical and temperate medicinal plants (Acorus calamus, Asilbe rivularis, Berberis asiatica, Centella asiatica, Moringa oleifera, etc.) were reported from Baitadi district. The common medicinal plants were Asparagus racemosus, Bergenia ciliata, Juglans regia, Paris polyphylla, Phyllanthus emblica, Swertia chirayita, Zanthoxylum armatum, etc.

Utilization and management

Table 1 shows the number of medicinal plant species used for each of the usage categories with their informant consensus factor. To take the level of diseases category analysis, an informant consent factor (ICF) was calculated following Trotter & Logan (1986). Result showed the high level of consensus where the total 47 plant species revealed the data range 0.86-1.00 but the present study analyzed only the species possessed informant consensus factor 0.95 and more. There were only 13 species with their informant consensus factor 0.95 or more, therefore the discussion of the study confined only on those species.

All the informants were consent upon the usage of Berberis asiatica for eye troubles and Cordyceps sinensis for memory longevity. It was also supported by the use of B. asiatica for eye infection in Tamang ethnic groups with possessing ICF 0.92 from central Nepal Himalaya (Yadav 2008). All the species possessing the highest consensus factor (0.97 – 1.00) revealed the affinity to the Ayurveda and phytochemical findings. Use of Asparagus racemosus as galactogogue (0.97), Berberis asiatica for eye troubles (1.0), Cordyceps sinensis as tonic and longevity (0.97), Curculigo orchoides as tonic and aphrodisiac (0.96), Nardostachya grandiflora for epilepsy (0.97) and Phyllanthus emblica as diuretic (0.97) possessed the highest consensus factor and they were concurred with the phyto-chemical findings. High consensus factor means the usage of these species are well known in study area. It can be excerpted from the findings that the species with the highest consensus factor (more than 0.97 in this study) are in line with the phyto-chemical validations and the species with the least consensus factor are misused during course of social-cultural and economical transformation. The species with the highest consensus factor and strong resemblances with phytochemical findings are potential for the investigation of phyto-chemistry and pharmacology.

However, with increasing use of traditional therapies, a verification of efficacy by western scientific means would be interesting, because the traditional health system adopt customized and multi-pronged strategies in treatment involving drug, diet and therapy. Results of the present study suggest a fairly good correlation between traditional therapeutic use and the in vitro phyto-chemical activity because the findings showed only about 50% affinity. It shows that the home herbal remedy is an independent health care system of Nepal Himalaya which is indigenous and influenced by the Ayurveda. These results corroborate the importance of ethno-pharmacological surveys for screening plants as a potential source for bioactive compounds. Hence these could result in discovery of novel antimicrobial agents. The unlike uses of the species after thorough scrutinization under different health care systems and comparisons pose research scopes and such uses would better to be researched and or
However, the changing life, perceptions, social transformation and acculturation result the indigenous knowledge gradual denudation.

Table 1: Medicinal plants, their usage and informant consensus factor (ICF) value

<table>
<thead>
<tr>
<th>S No</th>
<th>Indigenous uses</th>
<th>ICF</th>
<th>Use in the Ayurveda and Phytochemical validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Root juice is taken in migraine, snake bite and scorpion sting.</td>
<td>0.97</td>
<td>Plant is useful in diarrheal, spleen disorders. It is demulcent, expectorant and tonic (CSIR, 1954).</td>
</tr>
<tr>
<td>2</td>
<td>Roots are used for milling cattle, fermenting and local brewing. They are also useful in urinary and liver troubles. Acidity is also reduced.</td>
<td>0.96</td>
<td>Plant is galactogogue, aphrodisiac, diuretic, antimutagenic, and nerve tonic in the Ayurveda. Extract of A. racemosa root increase the mammary gland in postpartum period (Sahni et al. 1969) and acts as lactagogue (Sharma et al. 1996c). Root extract possess cardioprotective (Khanna et al. 1991), antioxidant (Kumar et al. 2001), antiulcer, antiinflammatory (Dhuley 1997), and diuretic (Balan and de Raybaud 1987).</td>
</tr>
<tr>
<td>3</td>
<td>Root juice is used for easy delivery during child birth. It is valued for fever, diabetes, dysentery and hemorrhage.</td>
<td>0.96</td>
<td>Extracts from A. racemosa boost antispasmodic and immunoprotecting activities (Chau et al. 1998) and beneficial in regulating various inflammatory process (Moon et al. 2003).</td>
</tr>
<tr>
<td>4</td>
<td>Bark is used in sprain and fracture. Root is tonic.</td>
<td>0.95</td>
<td>Leaf and bark extract is taken for skin diseases. Root is useful in pulmonary tuberculosis (Bajacharya 1979). Medicinal extract of the plant possess activity against herpes simplex virus (Taylor et al. 1996).</td>
</tr>
<tr>
<td>5</td>
<td>Root and stem bark paste is used to control worm.</td>
<td>1.00</td>
<td>Plant is astringent, antispasmodic, antihypertensive and astringent in properties. Bark extract is effective to the genital infection (Venezani & Gang 2002). Bark extract has been shown to bind to DNA and inhibit its cleavage (Kaye & Halen 1969).</td>
</tr>
<tr>
<td>6</td>
<td>Whole plant is tonic and aphrodisiac and useful in increasing memory.</td>
<td>0.97</td>
<td>Root stem and fruits is used in convulsin, inflammation, diabetes, leucoderma, skin diseases and fever in the Ayurveda. It use, as extract for eye drops in conjunctivitis, is widespread. It is effective as antisyphilitic, antihypertensive and pigment inducing (Gautam & Bhalu 1971).</td>
</tr>
<tr>
<td>7</td>
<td>Root is used as tonic and effective on paralytic.</td>
<td>0.96</td>
<td>Root is highly valued as aphrodisiac and tonic. It regulates body functions, strengthens immune system and promotes vitality and longevity (Kumar et al. 2006). Cordyceps has been used as an anti-aging herb (Wu et al. 2007). It is also used as hepatico-protective, antidiabetic, antitumorogenic and tonic (Wang et al. 2003). Cordyceps is anti-oxidant, anti-inflammatory, anti-ulcerative, and potentiation of the immune system (Liu et al. 1992). Root is diuretic, tonic, aphrodisiac, antiulcerative, and it is used in liver problems, piles, asthenia and amnesia in the Ayurveda. Cordyceps extracts are known to have vasculo protective activities (Yalls et al. 2008).</td>
</tr>
</tbody>
</table>
Medicinal plants were assumed to be a free commodity in Nepal and were mainly collected from wild since ancient past, which can make a significant contribution to the livelihoods, health care and income for those people who residing forest and pasture fringes and in rural areas (Kunwar 2002). Medicinal plants were collected as food, vegetable, and medicine for both domestic and commercial purposes. Some medicinal plants are used for home herbal remedy whilst the traditional healers (Baidhvas) used the species as major ingredients for their medicinal preparations (CECI 2006). However, the commercial collections of the species, started about a decade ago in the study area (CIRRUS 2008), are already threatening the populations of many species.

As a result of human population growth, habitat destruction and increasing commercial exploitation, pressure upon the existing plant resources is ever increasing. The number of individuals involved in collection, production and marketing of medicinal plants has noticeably increased in the study area (16.16% in comparison with 2007 data) due to a high growth...
global market of phytomedicines (Kunwar 2007). The global market of medicinal products (herbal products including medicinal, health supplements, and herbal beauty and toiletry) is over USD 60 billion and grows at the rate of 7% increment per annum (Nagpal & Karki 2004).

The harvesting knowledge level varied in each collectors group and depended on a species and its phenology. Most of the high value medicinal herbs such as Cordyceps (Yarchagunbu), Morchella (Guchhi), Zanthoxylum (Timur), etc. were collected with paying greater attention. Irrational (in terms of time, productivity and quality) collections have made the species namely Nardostachys grandiflora, Neopicrorhiza scrophulariflora, Astilbe rivularis, Dactylorhiza hatagirea and Juglans regia threatened.

Conclusion

As in other indigenous communities of the world, the communities of the Baitadi and Darchula districts are experiencing great changes in their way of life. However, medicinal plants still have played significant role in their life. The pharmacological studies indicate the immense potential of medicinal plants in the treatment of various chronic and lethal diseases. Use of Asparagus racemosus as galactogogue, Berberis asiatica for eye troubles, Cordyceps sinensis as tonic and longevity, Curculigo orchoides as tonic and aphrodisiae, Nardostachya grandiflora for epilepsy and Phyllanthus emblica as diuretic possessed the highest consensus factor and greater affinity to the Ayurveda and phytochemical findings. One of the factors constraining conservation, efficient use and sustainable management of medicinal plants and indigenous knowledge of utilization is the inability of users to recognize or commensurately value the functions and services of the products. Therefore similar research efforts on documentation and conservation of local plant resources and traditional knowledge are worthwhile.

References:

CECI. 2006. Traditional knowledge, resource availability and management practices of NTFPs/ MADP. Kathmandu: CECI.

CIRRUS. 2008. Business review. CIRRUS Kathmadu and Herb and NTFPs Co-ordination Committee, Department of Plant Resources, Kathmandu, Nepal

