A LAW OF THE INTEGRATED LOGARITHM FOR THE TAIL SUMS OF DYADIC MARTINGALES USING STOPPING TIMES

Ananta Acharya¹, Santosh Ghimire²

¹Central Department of Mathematics, Tribhuvan University, Kirtipur, Nepal
Email Address: anantaz@gmail.com

²Department of Science and Humanities, Institute of Engineering, Central Campus, Pulchowk, Tribhuvan University, Nepal
Email Address: santoshghimire@ioe.edu.np

Abstract

Stopping times have been used in number of places in the derivation of law of iterated logarithm for various context. In this article, we obtain a law of the iterated logarithm for the tail sums of dyadic martingales using stopping times.

Keywords: Dyadic Martingales, Tail LIL, Stopping times.

1. Introduction

In probability theory, the law of iterated logarithm (LIL) describes the magnitude of the fluctuation of a random walk. Its study is directly or indirectly related to dyadic interval and dyadic martingales. A dyadic interval of the unit cube [0, 1) is of the form $Q_{nj} = \left[\frac{j}{2^n}, \frac{j+1}{2^n} \right)$ for $n, j \in \mathbb{Z}$. Generally, we write Q_n to denote a generic interval of length $\frac{1}{2^n}$ [3]. If F_n denotes the σ-algebra generated by the dyadic intervals of the form $\left[\frac{j}{2^n}, \frac{j+1}{2^n} \right)$ on $[0,1)$ then the conditional expectation of f_{n+1} on F_n is given by $E(f_{n+1}|F_n) = \frac{1}{|Q_n|} \int_{Q_n} f_{n+1}(y) dy, \; x \in Q_n$. In this consideration, a dyadic martingale is a sequence of integrable functions $\{f_n\}_{n=0}^\infty$ with $f_n: [0,1) \rightarrow \mathbb{R}$ such that for every n, f_n is F_n-measurable and $E(f_{n+1}|F_n) = f_n$ for all $n \geq 0$. [2]

For a dyadic martingale, we define the maximal functions as $f^*_m = \sup_{1 \leq k \leq m} |f_k|$ and $f^* = \sup_{1 \leq k < \infty} |f_k|$ and the martingale tail square function is given as $S^2_n f(x) = (S'_n f(x))^2 = \sum_{k=n+1}^\infty d_k^2(x)$, where $d_k = f_k(x) - f_{(k-1)}(x)$ is the general term of martingale difference sequence $\{d_k\}_{1}^\infty$. [2]

In addition, for a dyadic martingale, we have $\{x: f^*(x) < \infty \} = \{x: \lim f_n(x) \text{ exists} \} \text{ a.s.}$ [1]

In this context, a theorem on the tail LIL for dyadic martingales gives an important result which is stated in the following theorem.[4]
Theorem 1 (Tail LIL for Dyadic Martingale)

Let \(\{f_n\}_{n=0}^{\infty} \) be a dyadic martingale. Assume that there exists a constant \(C < \infty \) such that
\[
\frac{|S_n f(x)|}{|f_n f(y)|} \leq C,
\]
for all \(x, y \in I_n \) where \(I_n = \left[\frac{j}{2^n}, \frac{j+1}{2^n} \right) \) for \(n = 1, 2, 3, \ldots \) and \(j \in \{0, 1, 2, 3, \ldots, 2^n - 1\} \).

Then
\[
\limsup_{n \to \infty} \frac{|f_n(x) - f(x)|}{2S_n f(x) \log \log \frac{1}{S_n f(x)}} \leq 2C \text{ for a.e. } x.
\]

From the assumption, we get \(S f(x) < \infty \) for a.e. \(x \). This shows that the sequence \(\{f_n(x)\} \) converges to \(f(x) \). Thus the tail law of the iterated logarithm gives the rate of convergence of dyadic martingales \(\{f_n\} \) to its limit function \(f \). Moreover, the rate of convergence depends on the tail sums of martingale square function.

As continuation in the tail LIL for dyadic martingales, we obtained a new result which can be considered as the corollary of the theorem on tail LIL for dyadic martingales stated above. Our main result is as follows.

Theorem 2

Let \(\{f_n\}_{n=0}^{\infty} \) be a dyadic martingale. Fix \(\theta \geq 1 \). Define stopping times \(n_k(x) = \min \{n: x \in I_n, \text{ for some } j \in \{1, 2, 3, \ldots, 2^n \} \} \) and \(\forall \ y \in I_n \) \(S_n f(y) < \frac{1}{y^{\theta k}} \). Then for the sequence of stopping times \(n_k(x) \),
\[
\limsup_{k \to \infty} \frac{|f(x) - f_{n_k}(x)|}{\sqrt{2S_n f(x) \log \log \frac{1}{S_n f(x)}}} < \sqrt{3}
\]
for a.e. \(x \).

Proof:

First of all we prove the following estimate for \(\lambda > 0, \eta > 0 \),
\[
|\{x \in [0, 1]: |f(x) - f_n(x)| > \lambda, S_n f(x) < \eta \lambda\}| \leq \exp \left(-\frac{1}{2 \eta^2} \right) \quad (1)
\]
To prove this we have
\[
|\{x: |f(x) - f_n(x)| > \lambda\}| \leq 6 \exp \left(-\frac{-\lambda^2}{2 ||S_n f||_\infty^2} \right)
\]
Here, \(S_n f(x) < \eta \lambda \) gives \(||S_n f||_\infty^2 \leq \eta^2 \lambda^2 \). So, \(\frac{-1}{||S_n f||_\infty^2} \leq \frac{-1}{\eta^2 \lambda^2} \). So we have,
\[
|\{x \in [0, 1]: |f(x) - f_n(x)| > \lambda, S_n f(x) < \eta \lambda\}| \leq 6 \exp \left(-\frac{-\lambda^2}{2 ||S_n f||_\infty^2} \right)
\]
\[
\leq 6 \exp \left(-\frac{-\lambda^2}{2 \eta^2 \lambda^2} \right)
\]
\[
= \exp \left(-\frac{1}{2 \eta^2} \right)
\]
This is the required result (1).

Now, choose \(\lambda = \frac{(1+\epsilon)\sqrt{2 \log \log \theta^2l}}{\\theta^2} \) and \(\eta = \frac{\theta}{(1+\epsilon)\sqrt{2 \log \log \theta^2l}} \) where \(\theta > 1 \) and \(\epsilon > 0 \). Then using (1) we have,

\[
\left\{ x \in [0, 1]: |f(x) - f_n(x)| > \frac{(1+\epsilon)\sqrt{2 \log \log \theta^2l}}{\\theta^2}, S_n'f(x) < \frac{1}{\theta^{l-1}} \right\}
\leq 6 \exp \left(\frac{-(1+\epsilon)^2(2 \log \log \theta^2l)}{2\theta^2} \right)
= 6 \exp \left(\log (2l \log \theta) \frac{-(1+\epsilon)^2}{\theta^2} \right)
= \frac{6}{(2l \log \theta) \frac{(1+\epsilon)^2}{\theta^2}}
= \frac{6}{(2l \log \theta) \frac{(1+\epsilon)^2}{\theta^2}} \cdot \left(\frac{1}{\theta^2} \right)
\]

Let us choose \(\epsilon = \sqrt{3} \theta - 1 \). Then we have \(\frac{(1+\epsilon)^2}{\theta^2} = 3 \). Thus,

\[
\left\{ x \in [0, 1]: |f(x) - f_n(x)| > \frac{(1+\epsilon)\sqrt{2 \log \log \theta^2l}}{\\theta^2}, S_n'f(x) < \frac{1}{\theta^{l-1}} \right\}
\leq 6 \exp \left(\frac{1}{2(2l \log \theta)} \frac{3}{1^{3}} \right)
= \frac{C}{1^{3}} \text{ (suppose).} \quad (2)
\]

Now, let \((x) = \sqrt{x \log \log \frac{1}{x}} \). Then \(g(x) \) is an increasing function. So for \(\frac{1}{\theta^2} \leq S_n'f(x) \), we have,

\[
\sqrt{2S_n'^2f(x) \log \log \frac{1}{S_n'^2f(x)}} \geq \sqrt{2 \frac{1}{\theta^2l} \log \log \theta^2l}
\]

Now, using (3), we have,

\[
\left\{ x \in [0, 1]: |f(x) - f_n(x)| > (1 + \epsilon) \sqrt{2S_n'^2f(x) \log \log \frac{1}{S_n'^2f(x)}} \right\}
\leq \sum_{l=k+1}^{\infty} \left\{ x \in [0, 1]: |f(x) - f_n(x)| > (1 + \epsilon) \sqrt{2 \frac{1}{\theta^2l} \log \log \theta^2l}, S_n'f(x) < \frac{1}{\theta^{l-1}} \right\}
\leq \sum_{l=k+1}^{\infty} \left\{ x \in [0, 1]: |f(x) - f_n(x)| > \frac{1}{\theta^l} \sqrt{2 \log \log \theta^2l}, S_n'f(x) < \frac{1}{\theta^{l-1}} \right\}
\]

\[\text{jacem, Vol. 2, 2016} \quad \text{A Law of the Integrated Logarithm for the Tail Sums of Dyadic Martingales Using Stopping Times}\]
\[\sum_{l=k+1}^{\infty} \frac{1}{l^3} \leq \int_{k}^{\infty} \frac{1}{x^3} \, dx = \left[-\frac{1}{2x^2} \right]_{k}^{\infty} = \frac{1}{k^2} \]

So, (4) can be written as,

\[\left\{ x \in [0, 1) : |f(x) - f_n(x)| > (1 + \epsilon) \sqrt{2S_n' f(x) \log \log \frac{1}{S_n' f(x)}} \right\} \leq \frac{C}{k^2} \]

This can be done for every \(n_k(x) \). So summing over all \(k \) we have,

\[\sum_{k=1}^{\infty} \left\{ x \in [0, 1) : |f(x) - f_n(x)| > (1 + \epsilon) \sqrt{2S_n' f(x) \log \log \frac{1}{S_n' f(x)}} \right\} \leq \sum_{k=1}^{\infty} \frac{C}{k^2} = C \sum_{k=1}^{\infty} \frac{1}{k^2} < \infty. \]

So, by Borel Cantelli lemma, for a.e. \(x \), there exists \(M \) which depends on \(x \) such that for every \(k \geq M \),

\[|f(x) - f_{n_k}(x)| \leq (1 + \epsilon) \sqrt{2S_n' f(x) \log \log \frac{1}{S_n' f(x)}} \]

But we have chosen \(\epsilon = \sqrt{3} \theta - 1 \). So,

\[|f(x) - f_{n_k}(x)| \leq \sqrt{3} \theta \sqrt{2S_n' f(x) \log \log \frac{1}{S_n' f(x)}} \]

that is,

\[\frac{|f(x) - f_{n_k}(x)|}{\sqrt{2S_n' f(x) \log \log \frac{1}{S_n' f(x)}}} \leq \sqrt{3} \theta \]

It is noted that as \(n \to \infty, k \to \infty \). Now, letting \(\theta \downarrow 1 \), we get for a.e. \(x \),

\[\limsup_{k \to \infty} \frac{|f(x) - f_{n_k}(x)|}{\sqrt{2S_n' f(x) \log \log \frac{1}{S_n' f(x)}}} \leq \sqrt{3} \]
References

