Radiation Coordinates of Florides - McCrea - Synge

J. López-Bonilla¹, R. López-Vázquez¹, G. R. Pérez-Teruel²
¹ESIME-Zacatenco, Instituto Politécnico Nacional,
 Edif. 5, 1er. Piso. Col. Lindavista CP 07738 México DF
²Depto. de Física Teórica, Univ. de Valencia, Burjassot-46 100, Valencia, Spain
Corresponding author: jlopezb@ipn.mx

Abstract: In this work we construct the element of volume vector $d\sigma$, of a surface of constant retarded distance around the trajectory of a charged particle with arbitrary motion in a Riemannian space. This constitutes a generalization of the method pioneered by Synge [1] in special relativity. The technique employed is suggested by the ‘radiation coordinates’ y' introduced by Florides-McCrea-Synge [2, 3] in the study of gravitational radiation.

Keywords: Radiation Coordinates, Surfaces of Constant Retarded Distance

1. Introduction

Here, the Florides-McCrea-Synge coordinates [2, 3] are used for the electromagnetic radiation and are considerably adapted to this purpose because, for such coordinates, the curved space behaves like a “flat space” in some aspects. That is, the use of y' implies that what was learned in Minkowski space can be naturally translated to a Riemannian space. Our expression for the element of volume vector $d\sigma$, of a surface of constant retarded distance, agrees with that obtained by Villarroel [4] by means of the procedure that DeWitt-Brehme [5] use when constructing a surface with constant instantaneous distance. However, we think that our method is simpler and more powerful, because it turns immediate the results on radiation tensors deduced in [6]. We shall use the World Function Ω of Ruse [7] which allows having covariant expansions in a curved space. This function remained forgotten for a long time, and its present relevance may be seen in [5, 8-20].

2. Radiation Coordinates

We assume the Dedekind (1868) [21, 22]-Einstein summation convention for the addition of repeated indices, and that the metric locally takes the form, $(\eta_{ab})=(1,1,1,−1)$ at any event. In order to construct the radiation coordinates y' [2] we need a timelike curve C (which in this case will be the electron trajectory) with an orthonormal tetrad on it:

$$\lambda(a), \dot{\lambda}(b) = \eta_{ab}, \quad \lambda(a)\dot{y}^{(a)} = g_{y'j'}, \quad \lambda(a)^{i} = \dot{X}^{i}$$

(1)
where, \(\vec{x'} = \frac{dx'}{ds} \) is the unitary tangent vector to \(C \), and \(x' \) is a totally arbitrary coordinate system with \(ds^2 = g_{ij} \cdot dx^i \cdot dx^j \). The primed indices label points on \(C \). Now let us see how \(x' \) gives new coordinates: We parameterize the null geodesic \(P'P \) in the form \(x'(v) \) with

\[
\frac{dx'}{dv} = \lambda' \quad \text{(retarded point associated to } P) \nonumber
\]

and \(x = x_0 \) at \(P' \), and \(x = x_1 > x_0 \) at \(P \) with \(V' = \frac{dx'}{dv} \) as its tangent vector, satisfying \(V'V = 0 \). The assigned radiation coordinates to \(P \) are given by:

\[
y' = -\Omega_j \lambda^{(r)j} + s \lambda_j \lambda (r) j'
\]

(2)

where \(\Omega_j \) denote the covariant derivative of \(\Omega \), see Synge [14]:

\[
\Omega_j = -(v_1 - v_0) V_j', \quad \Omega_j \Omega^{ji} = 0,
\]

(3)

so that \(y'^\sigma = -\Omega_j \lambda^{(r)j} \), \(y^i = \Omega_j \lambda^j + s \) which implies that in radiation coordinates the curve \(C \) is reduced to \(y'^\sigma = 0, y'^4 = s \). If we introduce the notation:

\[
\xi_j' = -\Omega_j', \quad w = -\xi_j \lambda^j = \Omega_j \lambda^j
\]

(4)

then we obtain the form of the relation (9.3) of Synge [1] for flat space:

\[
y'^\sigma = y'^\sigma = \xi_j \lambda^{(r)j}, \quad y^i = -y^4 = w + s,
\]

(5)

in this sense the curved space behaves like a Minkowski space-time, which is very useful. On the other hand, at \(P' \) the metric tensor can be written in terms of the tetrad as:

\[
g_{ij'} = \lambda^{(r)ij} - \lambda_j \lambda_i
\]

(6)

then \(y'^\sigma y'^\sigma = \xi_i \xi_j (g_{ij'} + \lambda^i \lambda^j') = w^2 \) due to (3, 4), from where \(\xi_j = y'^\sigma \lambda^{(r)ij} + w \lambda^j' \).
therefore $y' - y$ behaves like a null vector $(y' - y')(y, -y') = 0$. Thus, our expressions are compatible with (4, 5, 9) of [1]. Following the corresponding procedure in flat space, let us introduce a new system of coordinates:

$$z^\sigma = y^\sigma, \quad z^4 = y^4 - \sqrt{-g} y^\sigma = s,$$

that is, z^4 remains constant on the null cone with vertex at P'. It is clear that the Jacobian of the transformation $(y' \longrightarrow z')$ is equal to one, $J (z' / y') = \det (\partial z' / \partial y') = 1$, therefore:

$$J \left(\frac{z^a}{x^b} \right) = J \left(\frac{y^a}{x^b} \right),$$

(8)

now let us calculate (8). We have that

$$\frac{\partial z^\sigma}{\partial x^\nu} = -\Omega_{\nu} \, \mathcal{L}^{(\sigma) | \nu} + N^\sigma \, \Omega_{\nu}, \quad \frac{\partial z^4}{\partial x^\nu} = -w^{-1} \Omega_{\nu}$$

with

$$N^\sigma = w^{-1} \left(\Omega_{\nu} \, \mathcal{L}^{(\sigma) | \nu} + \Omega_{\nu} \frac{d}{ds} \mathcal{L}^{(\sigma) | \nu} + \Omega_{\nu} \frac{d}{ds} \mathcal{L}^{(\sigma) | \nu} \right),$$

where were employed the properties

$$\frac{\partial x^\nu}{\partial x'^{\nu}} = \mathcal{L}^\nu_{\nu}, \quad -w^{-1} \mathcal{L}^\nu_{\nu}, \quad \Omega_{\nu} = (v_i - v_0) \mathcal{V}_i,$$

hence:

$$J \left(\frac{z^a}{x^b} \right) = \mathcal{E}^{lijk} \frac{\partial z^{l}}{\partial x'^{l}} \frac{\partial z^{k}}{\partial x'^{k}} \frac{\partial z^{j}}{\partial x'^{j}} \frac{\partial z^{i}}{\partial x'^{i}} = w^{-1} \mathcal{E}^{lijk} \Omega_{j} \Omega_{j} \Omega_{i} \Omega_{i} \mathcal{L}^{(4) | l} \mathcal{L}^{(2) | k} \mathcal{L}^{(3) | j} \mathcal{L}^{(1) | i},$$

(9)

for the skew-symmetric nature of the Levi-Civita density \mathcal{E}^{lijk}. On the other hand, the World Function satisfies $\Omega_{\nu} = \Omega_{\nu}^p \Omega_{\nu}^p$, substituting this into (9) we get:

$$J \left(\frac{z^a}{x^b} \right) = w^{-1} \det (-\Omega_{\nu}^p) \mathcal{E}^{lijk} \mathcal{L}^{(4) | l} \mathcal{L}^{(2) | k} \mathcal{L}^{(3) | j} \mathcal{L}^{(1) | i} \Omega_{\nu}^p;$$

(10)

from (3) it is clear that Ω_{ν}^p can be written in terms of the tetrad:

$$\Omega_{\nu}^p = a_{\nu} \mathcal{L}^{(\nu) | \nu} + a_{\nu} \mathcal{L}^{(\nu) | \nu} : w = \Omega_{\nu} \mathcal{L}^{(\nu) | \nu} = -a_{\nu},$$

then, thanks to the skew-symmetry of \mathcal{E}^{lijk}, equation (10) acquires the form:

$$J \left(\frac{z^a}{x^b} \right) = \det (-\Omega_{\nu}^p) \mathcal{E}^{lijk} \mathcal{L}^{(4) | l} \mathcal{L}^{(2) | k} \mathcal{L}^{(3) | j} \mathcal{L}^{(1) | i} = \det (-\Omega_{\nu}^p) \det (\mathcal{L}^{(\nu)^p}) = g^{-\frac{1}{2}} (P') D,$$

(11)

where $D = -|\Omega_{\nu}^p|$, $g (P') = -|g_{\nu}|$. Let us introduce the notation:

$$\Delta = g^{-1} D = g^{-\frac{1}{2}} (P) g^{-\frac{1}{2}} (P') D, \quad g (P) = -|g_{\nu}|,$$

(12)

thus from (11):

$$J \left(\frac{z^a}{x^b} \right) = -g^{-\frac{1}{2}} (P) \Delta.$$
Taking into account the last identity it is clear the remark in [5] page 231 and [10] page 1251: the geodesics emerging from \(P \) begin their intersection when \(\Delta = 0 \), arising the so-called ‘caustic surface’. We shall therefore accept that \(P \) is near to \(P' \), in order to have this only geodesic between them. The analysis performed allows consider the volume element of the curved space-time:

\[
d^4x = \left| J \left(\frac{x}{z} \right) \right| d^4z = g^{-\frac{1}{2}}(P) \Delta^{-1} dsd^3z, \tag{14}
\]

but \(z'^a = wp'^a = wp, \mathcal{A}^a(\sigma) \) with \(p_i = w^{-1} \xi_i - \lambda_i \) = unitary spacelike vector:

![Fig. 2. The quantities \(p'^a \) represent the components of \(p' \) in the basis \(\mathcal{A}^a(\sigma) \).](image)

Therefore, \(z^1 = w \sin \theta \cos \phi \), \(z^2 = w \sin \theta \sin \phi \), \(z^3 = w \cos \theta \) which implies \(d^3z = w^2 d\omega d\gamma \) where \(d\gamma = \sin \theta d\theta d\phi \) is the element of solid angle in the rest frame of the charge. Then (14) adopts the form:

\[
d^4x = g^{-\frac{1}{2}}(P) \Delta^{-1} w^2 dsd^3\omega d\gamma, \tag{15}
\]

which together with (13) represents the generalization to Riemannian spaces of the results (9.15, 21) of Synge [1] (who made use of imaginary coordinates) for Minkowski space-time:

\[
J \left(\frac{z^a}{x^a} \right) = -1, \quad d^4x = w^2 dsd^3\omega d\gamma. \tag{16}
\]

In the next section we will apply (15) to the particular case of the surface \(w = \text{constant} \), which is important when studying the electromagnetic radiation

3. Surface of Constant Retarded Distance

Let us consider the 3-space \(w = \text{constant} \), then the covariant derivative \(w_r \) is orthogonal to that surface. It is therefore evident that its vector volume element is given by (where \(d\sigma \) is the 3-element of volumen):

\[
d\sigma = \left| w_{,a}w^a \right|^{-\frac{1}{2}} w_r d\sigma. \tag{17}
\]
But when building the shell formed by $w, w + dw$ and the null cones at P_1 and P_2, we get for its 4-volume $d^4x = dw \, d\sigma = \left| w, w + \frac{\sqrt{2}}{2}\right| \cdot dw \cdot d\sigma$, and after comparison with (15) implies that $\sqrt{2} d\sigma = g^{-\frac{1}{2}} \left(P \right) \Delta^{-1} w^2 \, ds \, d\gamma$, then (17) acquires the following form:

$$d\sigma_r = g^{-\frac{1}{2}} \left(P \right) \Delta^{-1} w^2 \, w_r \, ds \, d\gamma.$$

(18)

On the other hand, from (4) we deduce the expression:

$$w_r = \Omega_r, \lambda - w^{-1} \left(\Omega_r \lambda + \Omega_r \frac{d}{ds} \lambda \right) \Omega_r = \dot{\omega}_r - w^{-1} (X + W) \Omega_r,$$

(19)

where we used the notation $\dot{\omega}_r = \Omega_r, \lambda^r, X = \Omega_r, \lambda^r \lambda^r, W = \Omega_r \frac{d}{ds} \lambda^r = \Omega_r \mu^r$.

The substitution of (19) into (18) provides the result (3.35) of [4]:

$$d\sigma_r = g^{-\frac{1}{2}} \left(P \right) \Delta^{-1} w \left[\dot{w} - w^{-1} (X + W) \Omega_r \right] \, ds \, d\gamma.$$

(20)

which is the generalization to curved spaces of the result (10.6) in [1]. The deduction of (20) was simple thanks to the radiation coordinates. Nevertheless, the usefulness of \dot{z} goes far beyond that; in our opinion, its true importance lies on the analogies that we can establish with the Minkowski space-time, which will be seen more clearly in the next section.

4. Radiation Tensors

In a flat space we have the following radiative part of the Maxwell tensor corresponding to the Liénard-Wiechert retarded field [23]:

$$\frac{T_{\mu \nu}^r}{R} = e^2 \, w^{-1} \left(\mu^2 - w^{-2} W^2 \right) \xi_{\mu} \xi_{\nu}, \quad e' = \frac{e}{4\pi},$$

(21)
with $\mu^2 = \mu, \mu', \mu_r = \frac{d\lambda}{ds}, w = -\xi, \mu' \cdot W = -\xi' \cdot \lambda$, which satisfies:

$$T_{rs}^s \xi^s = 0, \tag{22}$$

$$T_{rr}^s \xi^s = 0. \tag{23}$$

A tensor field is said to be of the radiative type when it satisfies the properties (22) and (23). The continuity equation (23) is consequence of:

$$0 = s_{rs} R \xi^s, \quad (22)$$

$$0 = s_{rs} R . \quad (23)$$

which in turn are particular cases of the identity:

$$\left(f \left(\mu^2 W^m \xi^s \xi^t \right) \right) = 0, \quad -n - m = -4, \tag{25}$$

f being an arbitrary function of μ^2. It seems natural to wonder whether (21) can be extended to the curved space. The answer is positive under the two following prescriptions:

a).- Identify ξ with $-\Omega$, see (4).

b).- Multiply (21) by $\left[J \left(\frac{z^0}{x^0} \right) \right] = g^{\frac{1}{2}} (P) \Delta$ due to the fact that d^4x contains the factor $g^{\frac{1}{2}} (P) \Delta^{-1}$ with respect to the corresponding expression for the flat space, see (16).

Thus

$$T_{rs} = e^{-2} g^{\frac{1}{2}} (P) \Delta w^{-4} (\mu^2 - w^2 W^2) \Omega_r \Omega_s \tag{26}$$

satisfies (23) with covariant derivative, due to the fact that the validity of (22) turns out to be evident. We can also expect the generalization of (24):

$$\left[g^{\frac{1}{2}} (P) \Delta \mu' W^4 \Omega_r \Omega_s \right] = 0, \quad \left[g^{\frac{1}{2}} (P) \Delta w^4 W^2 \Omega_r \Omega_s \right] = 0, \tag{27}$$

besides from (15) and (26) we have:

$$\frac{R}{d^4x} = e^{-2} w^{-2} (\mu^2 - w^2 W^2) \xi^s \xi^t ds dt d\gamma \tag{28}$$

which is important when performing some integrations around the world line of the charged particle. It is worth noting that (26) and (27) correspond to the results (2.28,...,31) of Villarroel [6]. However, in our approach they can be obtained in a natural way by means of an explicit correspondence with the Minkowski space-time. The verification of (27) can be found in the work of the aforementioned author.
References

[22] Laugwitz D (2008), Bernhard Riemann 1826-1866. Turning points in the conception of mathematics. Birkhäuser, Boston, USA.