Prospective randomised trial of standard pressure versus low pressure laparoscopic cholecystectomy in a tertiary care hospital from Kolkata: Our experience

Bikash Chandra Ghosh*, Ambar Gangopadhyay

*Associate Professor, Department of General Surgery, R.G.Kar Medical College Kolkata

ABSTRACT

Background: Laparoscopic cholecystectomy (LC), the procedure of choice for symptomatic gallstone disease. An emerging trend is to perform Low pressure pneumoperitonum laparoscopic surgery as it has additive advantages over standard pressure to avoid complications while providing adequate working space. Aims and Objectives: The current study was designed with an aim to compare the advantage of low pressure pneumoperitoneum vs standard pressure pneumoperitoneum in laparoscopic cholecystectomy. Materials and Methods: The study was conducted in the department of General Surgery in R.G.Kar Medical College from January 2014 to June 2015. A total of 52 patients with symptomatic gall stone disease were recruited, 26 patients in each group randomly. Some intraoperative and post-operative parameters were studied. Results: All the intra-operative (IO) cardio-respiratory parameters (Pulse, Mean Arterial Pressure (MAP), End tidal CO₂, spO₂) were recorded just before incision, 20 minutes intra-operatively and before reversal of general anesthesia (GA). The IO parameters in our study, were found to be significant only at 20 minutes IO and before reversal of GA. The post-operative (PO) parameters (Pulse, MAP, Respiratory rate, spO₂) and pain by VAS score at 6 hours, 12 hours and 24 hours post-operatively were studied. Conclusion: Low pressure laparoscopic surgery is safe with least post operative complications when performed by experienced surgeons even in patients of ASA III.

Key words: Laparoscopic cholecystectomy; Standard pressure pneumoperitoneum; Low pressure pneumoperitoneum; Operative time; Post-operative pain; Shoulder tip pain

INTRODUCTION

Biliary diseases known since ages constitute a major portion of digestive tract disorders world over and Gallstone disease remains to be the major cause of abdominal morbidity and mortality.¹ Laparoscopic cholecystectomy (LC) has become the treatment of choice in symptomatic gallstones.² During LC adequate working space is required in the abdomen for good exposure that contributes to satisfactory results and patient safety.³ Common methods to create working space in the abdomen are pneumoperitoneum and abdominal wall lifting methods such as the laparotensor and laparolift.⁴ It enables to identify important anatomic structures and when no progress is made over a set period of time, a conversion to an open procedure is usually indicated. The pneumoperitoneum created by the gas (commonly by the CO₂) is associated with
Ghosh and Gangopadhyay: Standard pressure versus low pressure laparoscopic cholecystectomy

Gross hemodynamic changes, post-operative complications like shoulder pain and is considered unsafe in ASA class III and above. The current trend is to employ low pressure laparoscopic cholecystectomy (LPLC). While standard pressure pneumoperitoneum, employs a pressure range of 12-14 mm Hg, the low pressure pneumoperitoneum ranges from 7-10 mm Hg. This technique was attempted to lower the impact of pneumoperitoneum like CO$_2$ embolism, vaso-vagal reflex, cardiac arrhythmia, hypercarbic acidosis and minimizes haemodynamic effect of insufflation. However, the lower pressures involved in the LPLC might result in a less than adequate exposure of the operating space. This might result in longer than usual operating time, higher rate of intraoperative complications and also possibly higher frequency of conversion to standard pressure laparoscopic cholecystectomy (SPLC) or open cholecystectomy. The current study proposes to compare the advantages of low pressure with standard pressure pneumoperitoneum in LC.

MATERIALS AND METHODS

The current study was a prospective single centre comparative study which was conducted in department of General Surgery in R.G. Kar Medical College from January 2014 to June 2015. Fifty-two patients with symptomatic gall stone disease were recruited as per the inclusion criteria of the study. Of which 26 patients were randomly allocated in each group namely SPLC and LPLC. The data was recorded during operation, post operatively and at follow up in OPD for 3 months.

Inclusion criteria
1. Uncomplicated symptomatic cholelithiasis.
2. On pre-operative ultrasound with normal common bile duct.

Exclusion criteria
1. Acute cholecystitis and choledocholithiasis.
2. Gangrene and empyema and malignancy of gallbladder, biliary-enteric fistulae.
3. Chronic obstructive pulmonary disease, Coronary artery disease, congestive heart failure, asthma.
4. Patients with Cirrhosis, Significant portal hypertension, Pregnancy, Obesity, uncorrectable coagulopathies, generalized peritonitis.
5. Previous history of upper abdominal procedures
6. All cases converted to open method were excluded. In the study groups no case was converted.

Parameters studied
Data collected with regards to the following parameters:

Intra-operative
Operative time (starting from time of incision to time of closure in minutes), Intra operative cardio-respiratory stability monitoring parameters like pulse, Mean arterial pressure (MAP), End tidal CO$_2$ (ETCO$_2$) and monitoring and Oxygen saturation (%) before incision, after 20 minutes intra operatively and before reversal from GA.

Post-operative
Post operative cardio-respiratory stability monitoring like pulse, Mean arterial pressure (MAP), respiratory rate and Oxygen saturation (%) were recorded 2 hours post operatively.

b.i.) Complications like nausea and vomiting were recorded at 2 hours post operatively.

b.ii.) Post operative pain score was analyzed by using the Visual analogue scale (VAS) at 6 hrs, 12 hrs and 24 hrs post operatively.

c) Post operative recovery and hospital stay (in days)
d) Post operative return to normal activity in days.

STATISTICAL ANALYSIS

The data of SPLC and LPLC were analysed using ‘t’ test, χ2 and analysis of variance wherever applicable. The statistical analysis included sex, mean age, body mass index, operative time, postoperative pain assessed by the Visual Analogue Scale of Pain (VAS) including the incidence of shoulder-tip pain, postoperative hospital stay, return to normal activity following the operation. p <0.05 was considered as indicative of significance.

RESULTS

The current study included fifty-two patients with symptomatic gall stone disease, of which 26 patients were randomly allocated in each group namely SPLC and LPLC. Table 1 shows the demographic variables of the study subjects of both groups. The mean operating time in both groups is shown in Table 2.

Intra operative parameters like MAP, ETCO$_2$, Pulse and Oxygen saturation (%) were recorded and analyzed in both groups at subsequent three interval of time namely before incision, 20 minutes intra-operatively and before reversal.
from GA (Table 3). The post-operative parameters like pulse, MAP, respiratory rate and oxygen saturation (%) were recorded 2 hours post-operatively. The pain score (by VAS) were recorded at 6 hours, 12 hours and 24 hours in post-operative cases (Table 3).

The intra-operative parameters in our study, were found to be significant only at 20 minutes intra-operatively and before reversal of GA in all the parameters. In post-operative period, we observed significant differences at 2 hours post-operatively in all parameters except mean arterial pressure. There was significant difference in pain at 6 hours, 12 hours and 24 hours when compared in both groups (Table 3).

Post operative Shoulder pain was analyzed and was recorded in the six cases of SPLC group but none has shoulder pain in LPLC group. The differences in pain among both groups was statistically significant (p=0.02) (Figure 1). The 2 hours post operative nausea vomiting was found among 10 cases of SPLC group and only 2 cases in LPLC group, which was also statistically significant with a p-value of 0.01 (figure 2).

The post operative average hospital stay in LPLC group was 2.65 days whereas in SPLC group it was 2.18 days, though the differences were not significant (Table 4). Similarly the average return to the normal activity in SPLC group was 5.62 days when compared to LPLC group which was 6.1 days, again an insignificant difference.

DISCUSSION

The current study was a randomized prospective single centered study conducted at the Department of General Surgery, R.G. Kar Medical College and Hospital, Kolkata for a period of one and half year from January 2014 to June 2015. The numbers of patients was 52 and were equally allocated in both SPLC and LPLC groups randomly. Their age ranged from 24 years to 68 years and was selected irrespective of age/sex matched cases in both groups. Gastric decompression was done by Ryle’s tube in LPLC group, to allow collapse of stomach during operation and

<table>
<thead>
<tr>
<th>Type of operation</th>
<th>Mean Operating time (mins) ± SD</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPLC (n=26)</td>
<td>47.69 ± 13.50</td>
<td>0.1354 (NS)</td>
</tr>
<tr>
<td>LPLC (n=26)</td>
<td>53.46 ± 13.91</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>SPLC (n=26) mean ± SD</th>
<th>LPLC (n=26) mean ± SD</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP (mmHg)</td>
<td>Before incision 100.19 ± 10.94</td>
<td>99.87 ± 9.23</td>
<td>0.13 (NS)</td>
</tr>
<tr>
<td></td>
<td>Intraoperatively at 20 mins 101.86 ± 9.53</td>
<td>94.51 ± 2.39</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Before reversal from GA 102.15 ± 8.54</td>
<td>94.85 ± 2.43</td>
<td><0.001</td>
</tr>
<tr>
<td>ET CO₂</td>
<td>Before incision 33.57 ± 1.54</td>
<td>33.85 ± 0.79</td>
<td>0.48(NS)</td>
</tr>
<tr>
<td></td>
<td>Intraoperatively at 20 mins 39.05 ± 2.74</td>
<td>36.54 ± 1.23</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Before reversal from GA 38.13 ± 1.63</td>
<td>35.92 ± 1.45</td>
<td><0.001</td>
</tr>
<tr>
<td>Pulse</td>
<td>Before incision 75.9 ± 4.00</td>
<td>76.2 ± 4.1</td>
<td>0.37(NS)</td>
</tr>
<tr>
<td></td>
<td>Intraoperatively at 20 mins 88.33 ± 7.43</td>
<td>80.40 ± 4.67</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Before reversal from GA 86.60 ± 8.68</td>
<td>79.73 ± 6.64</td>
<td><0.001</td>
</tr>
<tr>
<td>O₂ saturation (%)</td>
<td>Before incision 97.23 ± 1.17</td>
<td>97.00 ± 1.41</td>
<td>0.23(NS)</td>
</tr>
<tr>
<td></td>
<td>Intraoperatively at 20 mins 96.53 ± 1.22</td>
<td>98.37 ± 1.13</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Before reversal from GA 97.47 ± 1.79</td>
<td>98.63 ± 1.40</td>
<td>0.029</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>SPLC (n=26) mean ± SD</th>
<th>LPLC (n=26) mean ± SD</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse</td>
<td>At 2 hrs post-operatively 101.53 ± 10.82</td>
<td>95.33 ± 6.67</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>At 2 hrs post-operatively 96.80 ± 6.01</td>
<td>94.23 ± 16.81</td>
<td>0.434 (NS)</td>
</tr>
<tr>
<td>偿 (min)</td>
<td>At 2 hrs post-operatively 21.60 ± 2.59</td>
<td>18.37 ± 2.94</td>
<td><0.001</td>
</tr>
<tr>
<td>O₂ saturation (%)</td>
<td>At 2 hrs post-operatively 97.00 ± 1.26</td>
<td>98.00 ± 1.23</td>
<td>0.005</td>
</tr>
<tr>
<td>Pain (by VAS Score)</td>
<td>At 6 hrs post-operatively 5.04 ± 0.66</td>
<td>3.88 ± 0.71</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>At 12 hrs post-operatively 2.23 ± 0.51</td>
<td>1.77 ± 0.65</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>At 24 hrs post-operatively 0.77 ± 0.59</td>
<td>0.42 ± 0.50</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Ghosh and Gangopadhyay: Standard pressure versus low pressure laparoscopic cholecystectomy

The current study did not observe any significant differences in age, gender and BMI in both groups. In a prospective randomized study was carried out on 80 patients, the mean age of patients in the SPLC group was 44.8 ± 9.7 years and that in LPLC group was 44.1 ± 11.1 years. The difference was not statistically significant. Females formed 67.5% in SPLC group and 65% in LPLC group. The difference was not however statistically significant (p = 0.58).

In another randomized case control study consisting of 80 patients in UPUMS, Etawah from January 2015 to July 2016. The mean age of SPLC and LPLC patient were 30.18 years and 34.75 years which was statistically not significant (P= 0.001 by unpaired t-test).

In a study in Poland among 148 consecutive patients, the incidence of shoulder-tip pain was 2.1 times lower after LPLC than observed in SPLC and the difference in pain score was statistically significant (p < 0.05). Sarli et al also observed similar findings in prospective randomized trial among ninety consecutive patients undergoing laparoscopic cholecystectomy. In their study fourteen patients (32%) in SPLC group and five patients (11%) in LPLC group complained of shoulder pain and the differences was significant (P<0.05). In another prospective randomized double blind study carried out at MMU, Department of Surgery, Solan among 50 patients also observed only 8% incidence of pain in shoulder tip in LPLC group when compared to SPLC which was 32% and

Figure 1: Analysis of Shoulder pain in both groups

Figure 2: Analysis of 2 hours Post operative nausea and vomiting in both groups

Table 4: Comparison of hospital stay and return to normal activity (in days)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>SPLC (n=26)</th>
<th>LPLC (n=26)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post operative hospital stay (days)</td>
<td>2.18 ± 0.99</td>
<td>2.65 ± 1.39</td>
<td>0.14 (NS)</td>
</tr>
<tr>
<td>Return to Normal Activity (days)</td>
<td>5.62 ± 1.30</td>
<td>6.10 ± 1.93</td>
<td>0.26 (NS)</td>
</tr>
</tbody>
</table>

The above mentioned studies concur with the finding of the current study were we observed the similar results.

The mean operative time in both groups was not significant in the current study. In a randomized prospective study from India for a period from July 2014 to October 2016, consisting of 50 patients observed, LPLC group had more operative time than SPLC but the difference was not statistically significant (p = 0.1).

In another prospective randomized trial conducted in Poland on 148 patients with uncomplicated, symptomatic cholelithiasis between May 2000 and December 2001. The operative time was similar in both groups (LP 55.7 ± 8.6min vs SP 51.9 ± 8.3 min). The current study is in accordance with the findings of the above studies.

In our study we observed post-operative shoulder pain in six cases of SPLC group but no shoulder pain was observed among LPLC group. The differences in pain among both groups was statistically significant (p=0.02).

In a prospective randomized study was carried out on 80 patients. Shoulder tip pain was noted in 15 (37.5%) of patients in SPLC group whereas only 5 (12.5%) patients complained of shoulder tip pain in the LPLC group. This difference was statistically significant (P = 0.010).

In another prospective randomized double blind study was conducted involving 118 patients between the ages of 20 and 75 years at Dr. RML Hospital, New Delhi, the mean visual analogue pain score of postoperative shoulder tip pain was significantly less intense in the low pressure group at 6, 12, 24 hours than that recorded in the standard pressure group (P<0.001 by unpaired t-test).
was statistically significant (p=0.012). The observation from the above studies conforms to our observations.

In another randomized prospective study conducted in Rajkot India, from July 2014 to October 2016, with a sample size of 50 patients also observed lower post-operative pain referred to the tip of the right shoulder in LPLC group when compared to SPLC group though the difference was not statistically significant which is not similar to the findings of the current study.

The End tidal CO₂ (EtCO₂) in the current study observed statistically significant difference at Inter-operatively 20 minutes and before reversal of G.A. In a study conducted by Singh et al in Etawah, Uttar Pradesh the mean EtCO₂ of patients in SPLC was found to be higher than that of LPLC at all the periods of observation except at 30 min after induction, differences in EtCO₂ levels of patients of LPLC and SPLC were found to be statistically significant at all the periods of observation at and after 30 min of induction (i.e. 30 min, 40 min, 50 min, 60 min and at 2 hrs). The findings of this study are more or less similar to our study, though our observation intervals were different but the differences between EtCO₂ of LPLC and SPLC group were statistically significant.

The current study observed significant difference in post-op pain at 6 hours, 12 hours and 24 hours post operatively. In a randomized prospective study by Gohil, the incidence and intensity of post-operative pain were significantly lower in LPLC group compared to SPLC group. At 6 hours the average pain score for patients who underwent LPLC group was 2.5 whereas it was 2.8 in SPLC though it was not significant difference among the group which our study observed at 6 hours. In 12 hours the average pain score was 2.6 in LPLC group whereas it was 2.7 in SPLC and the difference was statistically significant which conforms with our study findings. But again at 24 hours the average pain score between two groups was not significant as observed in our study. In a prospective study conducted by Zaman et al the average pain score in SPLC group was 5.72 and 0.92 in LPLC group and the differences was statistically significant (p<0.012). Yet another study by Barczynski et al where they reported no difference in intra-operative complications among both groups. However one of the study observed 43 patients (72.9%) showed no intra-operative complications in the LPLC group but 11 patients (18.6%) had bile spillage and 5 patients (8.5%) had bleeding. Among the SPLC group, 3 patients (5.1%) suffered intraoperative bleeding while bile spillage occurred in 12 patients (20.3%). Though no significant difference between the two groups was observed in terms of intra-operative complications (P=0.758).

Though LPLC has several disadvantages like intra-operative difficulties, bit more operating time, especially when the society is fond of minimal invasive surgery, the laparoscopic cholecystectomy has advantages as it is being performed in a single scar with single incision laparoscopic surgery (SILS) or even without any scar in the abdomen by NOTES still is considered surgery of choice keeping in mind the intra-operative and postoperative cardio-respiratory stability, it still stand safe procedure for the cardio-respiratory compromised patients undergoing laparoscopic cholecystectomy especially the ASA II and more.

LIMITATIONS OF THE STUDY

The limitation of the current study is single centered, small number of study subjects, operation by a single surgeon. The study did not observe any intra-operative findings like various gall bladder morphology (normal, distended, contracted), number of gall stones (single, multiple) and cholesterosis. Even the study didn't show any
intra-operative complications (vascular injury, bile spillage) conversion rate from LPLC to SPLC during operation, use of NSAIDs in post operative phase and other parameters of blood gas analysis like pH, PCO$_2$ and HCO$_3^-$ which were not analyzed during the study.

CONCLUSION

LP pneumoperitoneum is superior to SP pneumoperitoneum with respect to lower postoperative problems, a lower incidence of shoulder-tip pain, smooth recovery and a better quality of life within a week following the operation. LP should be performed for LC in cases of uncomplicated symptomatic gallstones if done in experienced surgeons, it is feasible and safe.

ACKNOWLEDGEMENT

Post-graduate Trainees and all staffs of Department of Surgery, R.G.Kar Medical College, Kolkata.

REFERENCES

Authors Contribution:
BCG- Review of literature, manuscript preparation and data collection; AG- Concept and design of the study, manuscript preparation, statistical analysis, data interpretation, critical revision of manuscript.

Work attributed to:
Department of General Surgery, R.G. Kar Medical College, Kolkata.

Orcid ID:
Dr. Bikash Chandra Ghosh- @ https://orcid.org/0000-0001-5708-9243
Dr. Ambar Gangopadhyay- @ https://orcid.org/0000-0003-2160-9256

Source of Support: R.G. Kar Medical College, Kolkata.(All surgeries conducted in this Government Medical College). Conflict of Interest: None declared.