INTRODUCTION

Hydrogen sulphide (H$_2$S) was traditionally considered as a toxic pollutant gas, devoid of any physiological or biological role, until 1989, when H$_2$S was eventually measured in the brain, and it quickly emerged as a critically important signalling molecule with widespread physiological actions.1,2 H$_2$S is now considered as the third gaso-transmitter, after...
and homocysteine to produce cystathionine. The CBS locus is also considered as a neuro-modulator. Activation of ATP-dependant potassium (K$_{ATP}$) channels, especially in vascular smooth muscles, is another well-established role. It has also been shown to protect mitochondria and ultimately improve cellular respiration and promote biogenesis which is also supported by some studies that showed enhanced mitochondrial electron transport and cellular bioenergetics on stimulation of endogenous production of H$_2$S(10-100nmol/L). However, at high concentrations, H$_2$S becomes toxic, causing inhibition of mitochondrial respiration via direct inhibition of Cytochrome C Oxidase enzyme. H$_2$S is also able to reduce oxidative stress. Many of in vitro and in vivo studies done to examine the potential therapeutic role of H$_2$S in the setting of ischemia/reperfusion (I/R) injury in the heart, brain, lungs, and liver, have reported beneficial actions of H$_2$S when administered at physiological or pharmacological concentrations. The protective actions are thought to result from anti-apoptotic, anti-inflammatory, antioxidant, and mitochondrial actions of H$_2$S.

Some recent studies suggest that an imbalance of hydrogen sulfide (H$_2$S) homeostasis can play an important role in the pathogenesis of β-cell dysfunction that occurs in response to type 1 and type-2 diabetes. Changes in H$_2$S homeostasis also play a role in the pathogenesis of endothelial injury, which develop on the basis of chronically or intermittently elevated circulating glucose levels in diabetes. H$_2$S may also inhibit insulin release and regulate β-cell survival. H$_2$S overproduction has been found to be a causative factor in the pathogenesis of β-cell death in diabetes. Pancreatic synthesis of H$_2$S is seen to be markedly elevated in the streptozotocin (STZ) induced diabetic rat, where biphasic effects on beta cells have been observed. At low concentrations, H$_2$S inhibited insulin release through K$_{ATP}$ dependent/Ca$_{2+}$-independent mechanism, whereas higher levels of H$_2$S induced beta cell death through endoplasmic-reticular-stress-dependent pathways.

In mammalian tissues, H$_2$S is synthesized from L-cysteine by different enzymes, principally by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). CBS and CSE are expressed in many tissues, including kidney and liver. In the human brain, CBS is the main producer of H$_2$S, while in thoracic aorta, ileum, portal vein, and uterus, CSE is predominant.

The CBS gene (chromosome 21q) encodes cystathionine beta-synthase enzyme (EC 4.2.1.22), which catalyzes the first irreversible step of trans-sulfuration reaction between serine and homocysteine to produce cystathionine. The CBS locus contains a number of DNA sequence repeats and single base variations that are polymorphic in Caucasians.

(1994) tabulated 14 mutations in the CBS gene that he and his colleagues had demonstrated in homocystinuria. In a case-control study involving patients with premature coronary artery disease, a 833T-C mutation in CBS gene has been found in slightly higher frequency in patients than in controls. A Chinese study has reported that CBS gene polymorphism (844 ins 68bp) is also associated with increased risk of type 2 diabetes mellitus. In another study in Chinese population, results indicated CBS T833C polymorphism is associated with increased incidence of stroke. Despite various limitations, results of a meta-analysis of different studies suggest that there was a significant association between the CBS T833C genetic polymorphism and risk of stroke.

As of today, there is very little data available about the prevalence of CBS gene polymorphism and its association with plasma levels of H$_2$S in patients of Diabetes Mellitus (type-2), especially in the Indian population. This study was started with an intention to gain some knowledge in this very little-known aspect of cellular biochemistry.

MATERIALS AND METHODS

40 clinically and biochemically diagnosed DM type II patients attending OPD of Endocrinology department of NRS Medical College & Hospital, Kolkata, and 40 age and gender matched non-diabetic control subjects were included in the study. Informed consent from all the participants and prior approval from institutional ethics committee (NMC/6804 Dated 13.11.2014) were obtained beforehand.

Inclusion criteria

Patients with type-2 diabetes mellitus diagnosed and confirmed by clinico-biochemical parameters.

Exclusion criteria

1) Patients of Type-1 diabetes mellitus
2) Patients having other endocrine disorders.
3) Pregnant women.
4) Patients of Renal failure.
6) Patients taking H$_2$S donor/inhibitor drugs.

Sample collection and preservation: 10 ml of EDTA blood was collected from each subject for DNA isolation. DNA isolation was done in fresh blood sample. 3 ml of clotted blood sample was collected from each subject, was centrifuged, serum was separated and then stored for other biochemical parameters. Serum was stored at -40°C. Fresh heparinised plasma was used for H$_2$S estimation.

DNA isolation

DNA isolation was done by proteinase K digestion and ethanol extraction method. Fresh 10 ml EDTA blood sample was mixed with 30 ml red cell lysis buffer and
centrifuged at 4°C at 4000 rpm for 10 minutes and the process repeated, until buffy coat was separated, which was mixed with 10% SDS and 500µl of Proteinase-K solution and incubated overnight. Next day, after centrifugation of the incubated sample with 1660µl of NaCl, ice-cold 96% ethanol was mixed to the supernatant slowly. DNA was separated and stored at -20°C.

Detection of alleles carrying mutations

To detect presence of 833T>C mutation, first ARMS-PCR of the DNA samples was performed.\(^{23}\) The PCR reaction was carried out in total volume of 40µl reaction mixture containing 150-200ng of DNA, 10 pmols of each of the reconstituted primers, 1U of Taq polymerase, 4 pmols of each of dNTP, 4µl of Taq buffer and rest of miopile water in a micro-centrifuge tube. To detect presence of 833T>C mutation, 3 allele-specific primers were used, with an artificially introduced mismatch(underlined): forward normal allele(5'-CCTGAAGCCGCGCCCTCTGCAGATAAT-3'), forward-mutant allele (5'-CCTGAAGCCGCGCCCTCTGCAGATAC-3') and reverse primer (5'GTGGCCGGGCTCTGGACTCGACTACC-3'). PCR were performed in thermocycler in the following protocol: 5 minutes at 95°C, then 40 cycles of [30 sec at 94°C, 30 secs at 68°C, 30 sec at 72°C], then 7 minutes at 72°C. After completion of all these procedures, the amplicons were stored at 4°C.

PCR products were analysed by submarine agarose gel electrophoresis using 3% agarose and staining done by ethidium bromide.

Amplification signal obtained with the mutant allele-specific primer signifies presence of C in 833 position—indicated by PCR product of 242 bp length. Amplicon obtained with the normal allele-specific primer demonstrates presence of T in position 833 --- indicated by PCR product of 174 bp.

Plasma hydrogen sulphide (H\textsubscript{2}S) estimation

Estimation of plasma H\textsubscript{2}S levels were done following the methods reported earlier,\(^{25,26}\) which is further modified and standardized in our laboratory.\(^{27}\)

425 µl of PBS taken in a glass tube, 75µl of plasma added along with 250µl of 10% tri-chloroacetic acid and then centrifuged at 3000 rpm for 15 mins and the supernatant decanted in another glass tube and then 250µl of 1% zinc acetate added to the supernatant. Next 133µl of 20mM N\textsubscript{2}N-dimethyl-p-phenylene-diamine sulphate and 133µl of 30mM FeCl\textsubscript{3} and 60µl of 10% NaOH was added. The resulting solution was incubated for 10 minutes at room temperature. The absorbance was taken in spectrophotometer at 670 nm. All samples were assayed in triplicate and the concentration of the solution was calculated against a calibration curve of sodium sulfide. Results of plasma H2S concentration were expressed in micromol/L.

Estimation of serum insulin: serum insulin was measured by ELISA method; using Calbiotech ELISA kit, based on sandwich ELISA principle.

Fasting blood sugar estimation: We measured FBS by commercial kit based on GOD-POD method.

RESULTS

When compared by independent t test, the plasma H\textsubscript{2}S level in diabetic patients, (69.12±7.09 µmol/ml) were found to be significantly (P< 0.001) higher than controls subjects(40.28 ± 6.074 µ mol/ml) (figure 1).

Plasma H\textsubscript{2}S level showed significant positive correlation with fasting Plasma glucose levels in the diabetic patients(r= 0.475, P<0.001), as shown in figure 2.

Plasma H\textsubscript{2}S level was also found to be significantly positively correlated with fasting serum Insulin levels (r= 0.655, P<0.001) of the diabetic patients, as shown in Fig. 3.

Results of ARMS-PCR of CBS gene c.833 T>C Polymorphism in Type 2 Diabetic Patients & Healthy Controls

PCR product of 174 bp demonstrates the presence of T in position 833, which is normal allele. PCR product of 242bp length signifies the presence of C in position 833. It is the mutant allele. Figure 4 shows the gel doc images of the PCR products.

In all the control subjects and 38 of the DM patients, the normal gene product of 174bp was found (TT). Mutant gene product of 242 bp was found in only 2 diabetic patients. The two diabetic individuals having the 833T>C mutation were heterozygous (TC) for the mutation, showing both 242bp as well as 174bp gene products.

Figure 1: Comparison of plasma H\textsubscript{2}S level in study subjects
Association of CBS Gene c.833 T→C Polymorphism with Type 2 Diabetes Mellitus

Frequency of C (Thr) allele in 833 position was found to be marginally (p>0.05) higher (0.25 vs. 0.0) in the diabetic patients as compared to the controls (Table 1). Overall, 95% of the patients carried T allele (TT+TC) as against 100% of the controls having this allele (TT).

Relationship between CBS 833 T-C polymorphism and plasma H$_2$S

Plasma levels of H$_2$S in individual genotypes (TT and TC) in patients are shown in Fig. 5. However no significant difference was found between the levels of H$_2$S in patients with TC (n=2) genotypes compared and the patients with wild TT (n=38) alleles (P>0.05).

DISCUSSION

India is presently having several fold increase in the prevalence of type-2 diabetes mellitus over last two decades. A number of recent literature have suggested a potential role of H$_2$S and H$_2$S modifying agents in the aetiology and management of this metabolic disorder. Hydrogen sulphide has now been proposed as a mediator of important physiological functions in human. It has been well established that H$_2$S plays a very important role in maintaining the insulin levels towards homeostasis as it prevents excess exhaustion of the beta cells.

The current study was aimed to find out whether there is any involvement of H$_2$S in type II DM and if association exists between the plasma levels of H$_2$S and c.833T>C polymorphism of CBS gene in the patients of type-2 diabetes mellitus in Indian population.

Our study found the serum H$_2$S levels in the patients of type II DM to be significantly higher (P<0.001) [69.12 ± 7.09 μ mol/l with the values ranging from 60.45 to 87.49 μ mol/l] than the control subjects. [40.28 ± 6.07 μ mol/l, with values ranging from 29.12 to 55.25 μ mol/l] (figure 1). The results also found significant positive correlation between plasma H$_2$S level with fasting serum Insulin level (P<0.001) and fasting plasma glucose level (P<0.001) in the diabetic patients (fig. 3 & 2).

To understand the role of H$_2$S in pathogenesis of Type-2 DM, it is important to remember, that ATP-sensitive K$^{+}$-channel regulates the resting membrane potential in β cells of pancreas. Increased intracellular ATP blocks K$^{+}$ATP channel, causing membrane depolarization and

Figure 2: Correlation between H$_2$S and fasting blood sugar levels in type-2 diabetes patients

Figure 3: Correlation between H$_2$S and fasting insulin Levels in Type 2 Diabetic patients

Figure 4: Gel doc image of controls and cases with wild (TT) and mutant allele (TC) of CBS Gene c.833 >C polymorphysim

Figure 5: Levels of H$_2$S in type-2 Diabetic patients with homozygous (TT) and heterozygous(TC) alleles.
opening of voltage dependant calcium channels, leading to Ca^{2+} signal induced insulin secretion. Thus, the insulin secretion is dependent upon K_{ATP} channel opening and closing. H2S is K_{ATP} channel opener; but, it has no effect of ATP concentration.\(^{30}\) In experimental animal models, both streptozotocin and Zucker diabetic fatty rats had significantly higher H\(_2\)S formation in the pancreas.\(^{31}\) H2S concentration was reported to be higher in Zucker diabetic rats as compared to that in and Zucker lean rats. Expressions of both the enzymes responsible for H\(_2\)S production, CSE and CBS, were also high in streptozotocin-induced diabetic rats.\(^{32}\)

Although, H\(_2\)S is not responsible for development of diabetes, but high H\(_2\)S level in diabetes is due to over-expression of H\(_2\)S producing enzyme. This over-expression of enzymes may be due to metabolic irregulation in diabetes.

According to another study, high-glucose-induced CSE expression increases H\(_2\)S production to protect \(\beta\)-cells, which thereby inhibit insulin release and protect themselves. H\(_2\)S may function as an ‘intrinsic brake’ in pancreatic \(\beta\)-cells in this regard.\(^{33}\) Increases in CBS and CSE expression and H\(_2\)S production in these diabetic tissues are reversed by insulin treatment, suggesting that this may be a secondary result from hyperglycemia or hypoinsulinemia.\(^{14}\)

The human CBS gene is reported to have several kinds of polymorphism. 833T>C polymorphism, is characterized by a T to C mutation at 833 position, causing an Isoleucine to Threonine amino acid substitution.\(^{34}\) In the current study, ARMS-PCR of the DNA samples for detection of CBS gene c.833T>C mutation were performed as per the method developed by J. Sokolova, & B. Janosikova with a few modifications,\(^{31}\) using standardized reagents. Among the forty DNA samples of diabetic patients, in 38 cases we found the 174 bp PCR product indicating homozygous normal allele. In only 2 DNA samples we found one 174 bp band and another 242 bp band, signifying heterozygosity of the CBS gene with c.833T>C mutation of one allele. In the DNA samples of healthy control subjects, PCR revealed that all the samples were homozygous with the 174 bp product of normal (TT) allele of CBS gene. No mutant band was found in control (fig. 4).

In our study, we could not find any significantly higher incidence of CBS gene c.833 T>C polymorphism in type 2 Diabetes mellitus patients. (table 1) The frequency of (C) allele was only marginally higher in the diabetic patients, in comparison to controls. Most of the study subjects (every healthy control subjects and even 95\% of the diabetic patients) have wild (TT) alleles.

Our observations reveal a significant association of serum H\(_2\)S levels, with type-2 diabetes mellitus. In our study, only a marginally higher incidence of c833T>C polymorphism of the gene synthesizing the CBS enzyme was found, which did not suggest any significant role of this polymorphism in the pathogenesis of the disease. To find more conclusive evidences about any possible role of this polymorphism in relation to the imbalance in H\(_2\)S homeostasis, a further large scale study with a larger sample size is warranted.

Table 1: Distribution of c.833 T>C genotypes and frequency of alleles in controls and type 2 DM patients

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Controls (n=40)</th>
<th>Patients (n=40)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT (n, %)</td>
<td>40 (100)</td>
<td>38 (95)</td>
<td>NS</td>
</tr>
<tr>
<td>TC (n, %)</td>
<td>0 (0.0)</td>
<td>2 (5.0)</td>
<td>NS</td>
</tr>
<tr>
<td>CC (n, %)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>-----</td>
</tr>
<tr>
<td>TC/CC</td>
<td>0 (0.0)</td>
<td>2 (5.0)</td>
<td>-----</td>
</tr>
</tbody>
</table>

T (thr) Frequency: 1.0 975 ——— C (Thr) Frequency: 0.0 0.025 ———

Controls indicate healthy subjects; Patients: Type 2 DM subjects; Genotype frequencies are indicated in absolute values and percentages in parenthesis. T and C represent each allele of the polymorphisms; n: number of subjects (number of alleles);
Fisher’s Exact Test was done.

REFERENCES

Dasgupta, et al.: CBS gene, Plasma H₂S and Diabetes Mellitus

Authors Contribution:

SDG- Concept and design of the study, review of literature, statistical analysis, manuscript preparation, critical revision of manuscript; IM- Sample collection, Data organisation, review of literature, preparation of first draft of manuscript; UKB- Conceptualized and designed the study, critical revision of the manuscript.

Work attributed to: Department of Biochemistry, NRS Medical College, 138 AJC Bose Road, Kolkata-14.

Orcid ID:
Dr Sayantan Dasgupta- https://orcid.org/0000-0002-8483-7072
Dr Ishita Mondal- https://orcid.org/0000-0001-9416-4097

Source of Support: Nil, Conflict of Interest: None declared.

52
Asian Journal of Medical Sciences | Jan-Feb 2019 | Vol 10 | Issue 1