A cadaveric study on the variations of the profunda femoris artery in South India

Anne George¹, Maheswary Thampi Santhakumary²

¹Associate Professor, ²Assistant Professor, Department of Anatomy, Government Medical College Kottayam, Kerala, India

ABSTRACT

Background: The knowledge of the variations in the branching patterns of the arteries in the femoral triangle is important to avoid iatrogenic injury to the vessels during clinical procedures. Aims and Objectives: The study was designed to explore the varying positions of the origin of the profunda femoris artery from the femoral artery. Materials and Methods: We have dissected the thighs of 60 embalmed bodies. The midpoint between the anterior superior iliac spine and the pubic symphysis was marked (midinguinal point). The distance of the point of origin of profunda femoris artery (PFA) from the femoral artery (FA) to the midinguinal point (MIP) was measured by black silk thread and scale. The relation of PFA to FA at its origin was noted. Results: In the majority of the cases, the PFA was found to arise posterolaterally from the FA. In 63.3% of the cases, PFA was found to arise posterolaterally from the FA, while in 21.5% of cases it took origin laterally from it. In majority of the cases, the PFA arose at a distance of 3-6 cms from midinguinal point while a considerable number originated more distally. Conclusion: PFA exhibits significant variations. Posterolateral origin from FA was the most common mode of origin.

Key words: Cadaveric; Profunda femoris artery; Midinguinal point; Postereolateral

INTRODUCTION

Profunda femoris artery (PFA) is the largest branch of femoral artery (FA). It is also called the deep femoral artery. It arises from the posterolateral aspect of the FA 3.5cm distal to midinguinal point (MIP). It spirals posterior to the FA and femoral vein between pectineus and adductor longus muscles. It gives muscular branches, medial and lateral circumflex femoral arteries, and four perforating arteries described in relation to adductor brevis the key muscle of the adductor compartment.¹

Clinicians name the FA above the origin of PFA as the common femoral artery and that below the origin of the profunda femoris artery as the superficial femoral artery.²³ The PFA supplies muscles of extensor, flexor and adductor compartments, also the head and neck of femur.¹ The FA and PFA are usually used for catheterization in various diagnostic procedures. Due to the relation of PFA with the femur and the hip bone there may be chances of development of aneurysms after penetrating injuries during internal and external fixation of hip bone, and during catheterization.⁵⁸ The main aim of the present study was to identify the varying positions of origin of PFA from FA and to compare the results of these variations in South Indian population with those of other studies.

MATERIALS AND METHODS

A descriptive study was conducted on 60 cadaveric specimens of lower limbs (30 right and 30 left) available in the department. The midpoint of the inguinal region (MIP) was marked using skin marker pen. Using surgical scalpel a skin incision was made from the anterior superior iliac spine to the pubic tubercle and a vertical incision 15cm long down from the MIP. The skin was reflected and the
inguinal ligament and femoral vessels were exposed by
dissection. The PFA was identified and its site and mode
of origin were noted. The distance between the origin of
PFA from the FA and the mid inguinal point (MIP) was
measured using black silk thread and scale (Figure 1). The
relation of profunda femoris artery to FA at its origin was
noted. The mode of origin and pattern of origin of PFA
from the femoral artery were also noted.

According to a study on the variations in PFA and its
branches, the authors have found an incidence of 62.5%
for the origin of PFA from the posterolateral aspect of FA.
The formula for calculating the sample size in a descriptive
study given below was used.

\[N = \frac{3.84PQ}{D^2} \]

Where P is the incidence in previous study, Q = 100-P and
D 20% of P. Here, P=62.5%, Q=37.5.97%, D is 12.5 and
N is the sample size and N =56.25. So, we have taken 60
as the sample size.

Ethical approval
Permission was obtained from institutional review board

Statistics
Continuous variables are expressed as means and standard
deviations and categorical variables are stated as numbers
and percentages.

RESULTS

Site of origin of profunda femoris artery
The observations in Figure 2 show the origin of PFA
from various aspects of femoral artery. On the right side
we found 7 cases where PFA arose from the lateral aspect
of FA (ie 23.3% of total right cases), 2 cases from the
posterior aspect (ie 6.67% of total right cases), 1 case from
the medial aspect (ie 3.33% of total right cases),1 case from
anterolateral aspect (ie 3.33% cases of total right cases), and 18 cases from the posterolateral aspect (ie 60% cases of total right cases).

On the left side we found 6 cases arose from the lateral
aspect of FA.(ie 20% of total left cases), 2 cases from the
posterior aspect (ie 6.67% of total left cases),1 case from
the medial the aspect (ie 3.33% of total left cases) 1 case
from the posteromedial aspect (ie 3.33% cases of total
left cases) and 20 cases from the posterolateral aspect (ie
66.67% cases of total left cases). We could not find any

cases arising from the anterolateral aspect. Thus of the total
cases, we obtained a mean of 21.65% of cases arising from
lateral aspect of FA, 6.67% of cases from the posterior
aspect, 3.33% of cases from the medial aspect,1.67%
of cases from the anterolateral aspect, 3.33% of cases
from the posteromedial aspect,63.33% of cases from the
posterolateral aspect. The most common position was
posterolateral on both the right and left sides.

Distance of origin of PFA
Figure 3 show the distances of origin PFA from MIP. Most
commonly PFA arises 3 to 6 cm from MIP. However, in
9 cases on the right side PFA arose at 9 to 12cms from
MIP. On the left side we found 7 cases of PFA arising 0
to 3 cms from MIP.

Pattern of origin of profunda femoris artery
Figure 4 shows the pattern of origin of PFA from the
FA. In 3.33 % of cases on the left side PFA arose as a
common trunk with MCFA and in 6.67 % PFA originated
as a common trunk with LCFA. However, in one case a
trifurcation was noted that PFA originated from femoral
important for procedures done in femoral triangle, to reduce the chances of intraoperative haemorrhages, post-operative complications, and for diagnostic imaging procedures. When the superficial femoral artery is occluded the PFA forms effective collaterals between the iliofemoral segment and popliteal artery and its branches.

Origin of PFA from the lateral aspect of FA was reported by Samarawickrama et al. \(^{13}\) Bergman et al. pointed out that if PFA arises from the medial aspect of FA, then FA may split into three vessels of almost equal caliber that are PFA, FA and lateral circumflex arteries. \(^{14}\)

A rare and dangerous variation in which the PFA passed in front of the femoral vein in the left lower limb of a 43-year-old male cadaver has been reported by Sahinet al. \(^{15}\) This type of variation was also observed in 5 limbs by Dixit et al. \(^{16}\) The origin of PFA from the medial aspect from FA was 10.5% as observed by them. The branching pattern of PFA was classified by Kumar and Muralimanju \(^{17}\) into three types: type 1, type 2 and type 3. In type 1 both circumflex femoral arteries arose from PFA. In type 2 one of the circumflex femoral arteries arose from PFA and the other from femoral artery. When both circumflex femoral arteries arose from the femoral artery it was classified as type 3. They reported that type 1 branching pattern was observed in 56.2% cases, type 2 in 39.6% cases and type 3 in 4.2% cases.

Shanahan et al. reported that the medial circumflex femoral artery was the main artery that supplies the femoral head and neck. \(^{18}\) The arterial supply of the femoral head was usually compromised after femoral neck fractures.

DISCUSSION

In literature, in the majority of the cases studied, the PFA is seen to take origin from the posterolateral aspect of the femoral artery (60%) while in 20% cases they arose laterally from it. Other origins even though fewer in numbers were also noted: posterior 7%, medial 2%, anterolateral 2% and posteromedial 3%.

Our study revealed that the PFA arose from the lateral aspect in 21.67 % (13 cases), from the posterior aspect in 6.67 % (4 cases), from the medial aspect in 3.33 % (2 cases) from the anterolateral aspect in 1.67 % (1 case), posteromedial aspect 3.33% (2 cases) and from posterolateral 63.33% (38 cases).

In a study by Prakash et al. in 50% of cases the mode of origin of the PFA was from the posterolateral aspect whereas Anjankar et al. found it to be 47.5% cases. \(^{10,11}\) A study on varying patterns of the origin of PFA in Thais was conducted by Thitilertdecha et al. \(^{12}\) Nagpal et al. also studied the varying patterns of the origin of PFA. \(^{9}\) Variations in the pattern of PFA and its branches are clinically very important for procedures done in femoral triangle, to reduce the chances of intraoperative haemorrhages, post-operative complications, and for diagnostic imaging procedures. When the superficial femoral artery is occluded the PFA forms effective collaterals between the iliofemoral segment and popliteal artery and its branches.

A rare and dangerous variation in which the PFA passed in front of the femoral vein in the left lower limb of a 43-year-old male cadaver has been reported by Sahinet al. \(^{15}\) This type of variation was also observed in 5 limbs by Dixit et al. \(^{16}\) The origin of PFA from the medial aspect from FA was 10.5% as observed by them. The branching pattern of PFA was classified by Kumar and Muralimanju \(^{17}\) into three types: type 1, type 2 and type 3. In type 1 both circumflex femoral arteries arose from PFA. In type 2 one of the circumflex arteries arose from PFA and the other from femoral artery. When both circumflex femoral arteries arose from the femoral artery it was classified as type 3. They reported that type 1 branching pattern was observed in 56.2% cases, type 2 in 39.6% cases and type 3 in 4.2% cases.

Shanahan et al. reported that the medial circumflex femoral artery was the main artery that supplies the femoral head and neck. \(^{18}\) The arterial supply of the femoral head was usually compromised after femoral neck fractures.
In majority of the cases, the PFA arises at a distance of 3-6 cm from MIP while a considerable number arise more distally. In our study the distance of origin of PFA from MIP was 3-6 cm in 21 cases on the right side and 18 cases on the left side. PFA arose as a common stem with MCFA in 33.3% cases and with LCFA in 66.67% cases on the left side. PFA was found to arise with LCFA and MCFA as a common trunk (trifurcation) in 33.33% cases on the right side. The average distance was 5.64 cm from MIP on right side and 4.8 cm on left side which gives an overall average of 5.22 cm.

Nagpal et al. reported that PFA arises from the lateral side of FA in 10% of cases. An incidence of 21.43% was reported by Thitilertdech et al. which is in agreement with our study. Our study gave an incidence of 33.33% for medial origin while 2.5% was reported by Nagpal et al., 3% by Rajani et al. and 10.55% by Sahin et al. In our study 63.33% (38 cases) PFA arose from the posterolateral aspect of FA. This is in agreement with other findings which reported incidences of 50% and 47.5%. In 33.33% cases PFA arose from the posteromedial aspect. Other studies reported 5% incidence for this type of origin.

For the distance of origin from MIP, in our study 21 cases on the right side and 18 cases on the left side PFA was found to arise between 3 and 5 cm from MIP. A study reported the distance of origin of PFA from MIP on the right side to be between 41 and 52 mm whereas on the left side to be between 46 and 54 mm. The average distance of the origin of PFA from midpoint of inguinal ligament as reported by Dixit et al. was 47.5 mm whereas at 35 mm and 40 mm was reported respectively by Williams et al. and Snell. The variations in the level of origin of PFA ranging from 10-30 mm proximally to 60-70 cm distally from MIP have been observed.

Arthroplasty of hip joint and many clinical procedures are done in the femoral triangle. Knowing the level and mode of origin of PFA is therefore of utmost clinical importance. Knowledge of variations in the level of origin of PFA is pertinent to prevent iatrogenic complications and severe haemorrhage. For cannulation of femoral artery the site of puncture is usually PFA or sometimes the superficial femoral artery. For reconstruction of lower limb and head and neck different types of flaps based on the perforators of PFA and even the fourth perforator which is the continuation of PFA are used. In all these surgeries the variations in the level and mode of origin of PFA helps to plan the flaps to be used. PFA is used for cardiac catheterization, transarterial chemoembolization for the treatment of malignancy, arteriography in peripheral vascular diseases, doppler imaging, ultrasonography, angiography and magnetic resonance imaging. Good knowledge of the course and branching patterns of the vessels in the femoral triangle are thus very important for surgeons and interventional radiologists.

CONCLUSIONS

Variations exist in the mode and pattern of origin of PFA. Our results are in agreement with those of previous studies. Posterolateral origin from PFA was the most common mode of origin.

ACKNOWLEDGEMENTS

We acknowledge Dr Shana Baby, Dr Margaret William postgraduates and Dr. Anju George Assistant Professor, Department of Anatomy, Government Medical College Kottayam, Kerala India for the technical support. Thanks are due to Dr. Hanna J Maria of Mahatma Gandhi University for helpful discussions in preparing the manuscript.

REFERENCES

10. Kumar PJ, Bhardwaj AK, Jose BA, Yadav SK and...

https://doi.org/10.4038/gmj.v14i1.1169

https://doi.org/10.1002/ca.21292

https://doi.org/10.16965/ijar.2014.528

https://doi.org/10.1097/00000637-200208000-00006

https://doi.org/10.1007/s005950050264

https://doi.org/10.1016/0002-9149(82)90512-4

https://doi.org/10.7860/JCDR/2015/13913.5876

https://doi.org/10.1002/bjs.1800761258

https://doi.org/10.1002/ca.980060313