INTRODUCTION

The novel coronavirus (SARS-CoV-2), which first appeared in Wuhan, Hubei province of China, in December 2019, has turned into a dangerous widespread pandemic. It is a highly transmissible virus that is mainly transmitted by air. While many infected individuals have mild symptoms such as fever, fatigue, and cough, in severe cases, patients can deteriorate rapidly and develop a substantial pulmonary engagement, including pneumonia and acute Respiratory distress syndrome (ARDS). However, patients may present with many extrapulmonary complications of COVID-19 infection, such as septic shock, metabolic acidosis, and disseminated intravascular coagulation (DIC), and thromboembolic events. This article focuses on the prophylaxis of thrombosis in COVID-19 patients during the active phase of the disease and the early recovery period.

MATERIALS AND METHODS

A literature search was conducted through PubMed and Google Scholars using the Medical subject headings COVID; Coronavirus; Coagulopathy; Disseminated Intravascular
Hosseini Mehr, et al.: Thrombosis and thromboprophylaxis In COVID-19

Coagulation; Thrombosis; Deep Vein Thrombosis; Pulmonary Embolism; Venous Thromboembolism; Homeostasis and; and Acute Ischemia.

HOW COVID-19 CAN PROMOTE COAGULATION AND THROMBOSIS

Although the exact mechanisms through which coronavirus induces thromboembolic events are not clearly understood, there are currently many hypotheses that include the hypercoagulable state in COVID patients based on an intensified inflammatory response which in turn leads to thrombo-inflammation. Other proposed mechanisms are cytokine storm, complement activation, and endothelial cell damage. These mechanisms can directly compromise microcirculation (Figure 1).

Emerging evidence suggests the virus itself can probably activate the coagulation cascade through ACE2-mediated viral entry and tissue damage, as well as dysregulation of the renin-angiotensin-aldosterone system (RAAS), which are thought to be unique to COVID-19. There is cumulating evidence that microcirculatory compromise is the hallmark of the COVID-19 hypercoagulable state.

Critically ill patients fulfill the three criteria of Virchow’s triad, namely; reduced venous flow from immobility, prothrombotic changes as a result of an acute inflammatory state as well as endothelial damage within microvessels due to direct action of SARS-CoV-2 (ACE receptor) increase the risk of thrombotic events.

Thrombotic events in COVID-19 patients can further be classified into venous, arterial, and microcirculatory events.

Venous thromboembolism
The most common thrombotic manifestation of COVID-19 is by far pulmonary embolism. Middeldorp et al., reported a higher incidence of thrombotic complications in their ICU patient population (7-day and 14-day) compared to the patients admitted on the wards, while all patients received a prophylactic dose of anticoagulant upon admission. Another study conducted in France by Helms et al., which included 150 patients with COVID-19 associated acute respiratory distress syndrome (ARDS), showed a VTE rate of 18%, with PE being most common. Even though current data is not enough to properly categorize patients into a high thrombosis risk group, it has been suggested that elderly, Caucasian, and African-American ethnicities may be more prone to develop a hypercoagulable state.

Arterial thrombosis
There has been a surging number of reported arterial thrombosis cases and ischemic events in COVID-19 patients. Acute mesenteric ischemia, in which preliminary pathological evidence showed bowel necrosis with small vessel thrombosis involving the submucosal arterioles, thereby pointing to an in-situ thrombosis. In a study by Lodigiani et al., which included 388 patients with COVID-19, the incidence of acute coronary syndromes was 1.1%. Troponin levels have been noted to be significantly higher in the non-survivors, which may provide prognostic value. A retrospective study of admitted COVID-19 patients by Oxley et al. reported an alarming seven-fold increase in large vessel strokes in the <50-year-old age group. Another case series reports three patients with COVID-19 presenting with strokes and limb ischemia.

Microvascular thrombosis
Several clinical reports have demonstrated thrombotic microangiopathy (TMA) in patients with COVID-19, most notably including autopsies. In a postmortem study by Menter et al., five out of eleven patients showed microthrombi evidence in lung autopsies. Ackermann et al., presented a case series of widespread thrombosis along with severe endothelial injury and the presence of the virus inside the cells in the lung autopsies of seven COVID-19 patients. The researchers also reported that alveolar microthrombi were 9 times more prevalent in COVID-19 patients than in those with the severe form of influenza (p < 0.001). Furthermore, significantly elevated levels of VWF and FVIII in COVID-19 patients suggest endothelial activation in these patients. Endothelial damage, in turn, is a major promoting factor for thrombosis. The observation that male sex, obesity, hypertension, and diabetes are poor prognostic factors for severe disease with COVID-19 further supports this theory due to the presence of endothelial dysregulation at baseline in these patients.
MONITORING LABORATORY MARKER INDICATING THROMBOSIS RISK

Based on new data, it appears increasingly essential to routinely monitor D-dimer, fibrinogen, platelet count, and PT/aPTT to assist in anticipating and managing thrombotic complications. It is now proven that a d-dimer level cutoff of 1.5 μg/mL can predict venous thromboembolic events with a sensitivity rate of 85% and specificity and 88.5%. It also has a negative predictive value of 94.7%.

CURRENT ANTICOAGULANT AGENTS IN USE AND THEIR INDICATION

At the moment, there are several classes of anticoagulants available for preventing and treating thromboembolic events in COVID-19 patients. Figure-2 summarizes the characteristics of an ideal anticoagulant for COVID-19 thromboprophylaxis.

Heparin
Heparin has an established place in preventing and treating venous thrombosis. The sulfated nature of its constituent HS glycosaminoglycan chains confers heparin with the highest negative charge density of any known biomolecule. This charge allows heparin to strongly and selectively interact with an immense number of proteins, the most classic being its interaction with serine protease inhibitor antithrombin-III (AT3) that provides its anticoagulant activity.

Heparin's anti-inflammatory effect has long been proven, which is achieved through different mechanisms.

Heparin also has shown antiviral properties against enveloped viruses, including coronaviruses. Some recent data suggest that soluble heparin interacts with the SARS-CoV-2 spike protein and inhibits SARS-CoV-2 spike pseudo-virus entry, which could potentially benefit patients suffering from COVID-19 infection.

Fondaparinux
Fondaparinux is an indirect factor X inhibitor. It has a half-life of 17-21 hours. Recent studies suggest that patients with mild to moderate COVID may avoid fondaparinux due to a relatively high bleeding risk. It is also contraindicated in patients with crcl<30.

Sulodexide
Sulodexide, traded as Aterina, is a highly purified mixture of glycosaminoglycans composed of low molecular weight heparin (80%) and dermatan sulfate (20%). In addition to thrombosis prophylaxis, sulodexide is used off-label in some countries to treat reperfusion injury and diabetic retinopathy. Unlike other heparins, SDX can be administered orally with sufficient intestinal absorption providing a median bioavailability of approximately 40%, eliminating the fear of needles of LMWH injections. Sulodexide is safe to use in renal insufficiency and is less likely related to HIT, major bleeding, and drug-induced hypersensitivity than LMWH. All these features render Sulodexide the potential to be a real alternative to low molecular weight heparins in preventing COVID-19 induced vascular complications.

Direct factor X inhibitor
The DOACs include the direct thrombin inhibitor Dabigatran and Argatroban, and the factor Xa inhibitors. It is a zymogen which means, Factor X is activated either via the intrinsic pathway or the extrinsic pathway (Through factor IXa and factor VIIa/tissue factor, respectively).

Currently, there are four clinically approved direct FXa inhibitors for use, which are Rivaroxaban (approved in

Figure 2: What is required from an ideal Anticoagulant Agent
Inflammatory cytokines inhibition
Tocilizumab, an interleukin-6 inhibitor, and Anakinra-IL1 inhibitor, have been used in the setting of cytokine release syndrome in COVID-19, and recent pilot prospective data suggest a survival benefit if used early in the course of the disease.

PROPHYLACTIC ANTICOAGULANT THERAPY IN HOSPITALIZED COVID-19 PATIENTS
A coagulation disorder (hypercoagulability) induced by systemic inflammatory state, endothelial activation, hypoxia, and immobilization may lead to a hypercoagulable state. The International Society now recommends the use of prophylactic doses of LMWH on Thrombosis and Haemostasis (ISTH) for all hospitalized COVID-19 patients, unless they have active bleeding or platelet count < 25 × 109/L.

In hospitalized, critically ill patients, at the moment, low molecular weight heparin or unfractionated heparin is preferred over oral anticoagulants because of their shorter half-lives, ability to be administered intravenously, or subcutaneously, and fewer drug-drug interactions. Table-2 contains examples of prophylactic anticoagulant therapy protocols, recommended by health authorities worldwide.

NEED FOR ANTICOAGULANT PROPHYLAXIS POST-DISCHARGE, WHEN AND FOR HOW LONG:
Even though COVID-19 has been associated with an increased risk of thrombosis and predominantly venous thromboembolism, Post-recovery anticoagulant protocols remain controversial among experts.

In a retrospective study by Patel Rushad et al., of 163 covid patients, the cumulative incidence of overall (venous and arterial) thrombosis was 2.5% at day 30 after discharge. In King’s college hospital, a retrospective study of 18159 hospital-discharged COVID-19 patients in 2019 revealed that 85 experienced post-discharge HA-VTE, at

Table 1: List of currently available Law molecular weight heparins

<table>
<thead>
<tr>
<th>LMWH</th>
<th>Brand name</th>
<th>Half-life (Subcutaneous)</th>
<th>Molecular weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ardeparin</td>
<td>Normiflo</td>
<td>3.3 hours</td>
<td>5500-6500</td>
</tr>
<tr>
<td>Bemiparin</td>
<td>Ivor</td>
<td>5-6 hours</td>
<td>3600</td>
</tr>
<tr>
<td>Certoparin</td>
<td>SandoparinEmbolex</td>
<td>3-4 hours</td>
<td>5400</td>
</tr>
<tr>
<td>Dalteparin</td>
<td>Fragmin</td>
<td>3.5-4 hours</td>
<td>6000</td>
</tr>
<tr>
<td>Enoxaparin</td>
<td>Clexane, Lovenoxy</td>
<td>4.6 hours</td>
<td>4500</td>
</tr>
<tr>
<td>Nad roparin</td>
<td>Fraxiparine</td>
<td>3-4 hours</td>
<td>4300</td>
</tr>
<tr>
<td>Parnaparin</td>
<td>Fluxum</td>
<td>3-4 hours</td>
<td>5000</td>
</tr>
<tr>
<td>Reviparin</td>
<td>Clivarin</td>
<td>3 hours</td>
<td>4400</td>
</tr>
<tr>
<td>Tanziparin (Logiparin)</td>
<td>Innohep</td>
<td>3.9 hours</td>
<td>6500</td>
</tr>
</tbody>
</table>

Vitamin K inhibitors
Hospitalized patients with COVID on Vitamin K inhibitors, such as warfarin, are placed on parenteral heparin instead since there is an increased instability of prothrombin time (PT)/INR due to the high variability of vitamin K metabolism, diet, fasting, co-medications, liver impairment, and heart failure in patients hospitalized with COVID-19 treated with VKA.

ADJUVANT THERAPY
TPA
Tissue plasminogen activator (tPA) in COVID-19 ARDS Evidence of microthrombi and coagulopathy in critically ill COVID-19 patients prompted the possibility of tissue plasminogen activator (tPA) as a potential treatment.

Asian Journal of Medical Sciences | Jul 2021 | Vol 12 | Issue 7
Table 2: Examples of Currently Available Prophylactic Anticoagulant Therapy Protocols in Hospitalized COVID-19 Patients

<table>
<thead>
<tr>
<th>International Society of Thrombosis and Hemostasis</th>
<th>In all patients with COVID-19 Who are hospitalized, including non-critically ill, in the absence of contraindications (active bleeding and platelet count < 25,000/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Society of Hematology (Expert Panel)</td>
<td>All hospitalized patients with COVID-19. LMWH or Fondaparinux (suggested over UFH to reduce contact) in the absence of increased bleeding risk For CrCl > 30 mL/min: Give LMWH or Fondaparinux For CrCl < 30 mL/min or acute kidney injury: UFH5000 SC BD or TDS or dose-reduced LMWH</td>
</tr>
<tr>
<td>Swiss Society of Hematology</td>
<td>For all hospitalized COVID patients with dose adjustments based on the patient’s weight. D-dimer levels as well as the development of renal, hepatic, or respiratory failure</td>
</tr>
<tr>
<td>THANZ (Thrombosis and Hemostasis Society of Australia and New Zealand)</td>
<td>For moderate to severely ill patients</td>
</tr>
</tbody>
</table>

a median of 29 days (interquartile range, 16–51 days) post-discharge. Fifty-six episodes (66%) of HA-VTE occurred within 42 days of discharge, giving a rate of 3.1 per 1000 discharges.\(^{54}\)

Increasing data suggest that COVID-19 RNA can still be detected in the respiratory specimen collected from recovered patients up to 12 weeks after recovery; however, the replication-competent virus has not been isolated beyond 3 weeks after symptom onset.\(^{55}\) This data further support the need for a thrombosis prophylaxis regimen in the early weeks after recovering from COVID-19.

According to the National Institute of Health’s current protocol, patients could be considered for COVID-19 VTE prophylaxis only if the post-discharge criteria are met.\(^{56}\) The American Society for Hematology expert panel recommends that any decision to use extended post-discharge thromboprophylaxis with anticoagulation or aspirin should consider the individual patient’s VTE risk factors, such as reduced mobility, coagulopathy, and bleeding risk.\(^{57}\) The International Medical Prevention Registry on Venous Thromboembolism (IMPROVE) VTE risk score has been used as a measure to identify patients who would benefit from extended-use prophylaxis with LMWH.\(^{58}\) Current Protocols suggest that patients hospitalized with COVID-19, who present with an improved VTE score of > 3, an elevated D-dimer level (> 2× upper limit of normal), and 2 or more of the following characteristics: age > 60, previous VTE, known thrombophilia, current cancer, should be strongly considered for extended thromboprophylaxis up to 39–45 days post-discharge either with prophylactic dose LMWH or Rivaroxaban.\(^{59,60}\) For patients who have been empirically started on therapeutic anticoagulation for suspected PE, the ASH panel recommends that they remain anticoagulated for at least 3 months. Furthermore, confirmed VTE cases should be considered “provoked” and treated for 3–6 months duration.\(^{2}\)

THROMBOTIC EVENTS DESPITE THROMBOPROPHYLAXIS IN COVID-19 PATIENTS

There are numerous examples of patient’s thrombotic events despite current treatment. In a large study in the Netherlands, 184 ICU patients with COVID-19 who were all on at least standard thromboprophylaxis had a 27% cumulative incidence of VTE, with pulmonary embolism (PE) being most frequent (81%).\(^{62}\) A Spanish retrospective cohort study of 1127 COVID-19 patients also reported a 6.1% incidence of thromboembolic events despite standard thromboprophylaxis.\(^{61}\)

A prospective cohort study by Jimenez-Guiu et al., of 67 non-critically ill patients admitted to the hospital for COVID-19 pneumonia showed a high risk of DVT despite receipt of correct, standard thromboprophylaxis.\(^{61}\)

CONCLUSION

To conclude, current criteria for prophylactic anticoagulation in COVID-19 patients seems to be inadequate as there are increasing reported cases of thromboembolic events despite prophylactic anticoagulant therapy among hospitalized patients. Moreover, there is currently no agreement on the choice and dosage of anticoagulant agents among experts, while there is a high risk of bleeding among patients due to the COVID-19 induced coagulopathy. In the case of post-discharge prophylaxis in COVID-19 patients, evidence suggests that all COVID patients need to be on anticoagulant therapy for 45 to 90 days, even though thrombotic risk commonly persists despite initiation of anticoagulation. It is also wise to seek new drugs and delivery modes such as inhalation, which would be more efficient in preventing Hypercoagulability and reducing treatment’s side effects.

REFERENCES

2. Abou-Ismail MY, Diamond A, Kapoor, S, Arafah Y and

15. Zhai P, Ding Y and Li Y. Impact of COVID-19 on ischemic stroke: A case report. https://doi.org/10.21203/rs.3.rs-20393/v1

30. Zhai P, Ding Y and Li Y. Impact of COVID-19 on ischemic stroke: A case report. https://doi.org/10.21203/rs.3.rs-20393/v1
The 2019 coronavirus (SARS-CoV-2) surface protein (Spike) S1 Receptor Binding Domain undergoes conformational change upon heparin binding. bioRxiv. 2020; https://doi.org/10.1101/2020.02.29.971093

Author’s contribution:
SPHM-Concept and design of the study; prepared first draft of manuscript; VS- Review of manuscript; YD, ID-Reviewed the literature and manuscript preparation.

Work Attributed to:
Department of Surgery and Organ Transplantation, Shalimov National Institute of Surgery and Transplantology.

Orcid ID:
Dr Seyed Pouriya Hosseini Mehr- https://orcid.org/0000-0001-5226-2334
Prof Valentin Smorzhevskyi- https://orcid.org/0000-0001-8410-3944
Dr Yuliia Dzekunova- https://orcid.org/0000-0002-8400-6789
Dr Igor Dmytrenko- https://orcid.org/0000-0001-5849-3977

Source of funding: None, Conflicts of Interest: None.