The correlation between iodine nutrition and autoimmunity among hyperthyroid goiter patients in tertiary care hospital of Tamil Nadu

Suresh Pichandi1*, Sivakumar J2, Ganesh V3, Janakiraman P4, Ramadevi K5

1Associate Professor, 2Tutor, Department of Biochemistry, Sri Venkateshwara Medical College and Research Center, Puducherry, 3Associate Professor, Department of Biochemistry, Dhanalakshmi Srinivasan Medical College and Hospital, Perambalur, Tamil Nadu, 4Tutor in Statistics, Department of Community Medicine, PES Institute of Medical Sciences and Research, Kuppan, Andhra Pradesh, 5Professor and Head, Department of Biochemistry, Madras Medical College and Govt. Rajiv Gandhi General Hospital, Chennai, Tamil Nadu, India

ABSTRACT

Background: Iodine is a trace element that is essential for the formation of thyroid hormones. It is essential for the human life’s growth and development. The thyroid gland size and functions affected by deficient or excessive intake of iodine. Iodine excess intake was found to associating with iodine-induced hyperthyroidism (IIH) and autoimmune thyroiditis. Aims and Objectives: The present study was to find the hyperthyroid goiter patient nutritional status by urinary iodine excretion (UIE) measurement and correlate them with thyroid hormone and thyroid autoantibodies. Materials and Methods: In this study, 100 adult hyperthyroid goiter and 100 apparently normal adult subjects were conveniently recruited in this study. Urinary iodine estimation and serum TSH, fT4, fT3, AMA, and ATG were estimated, which were estimated for case and control groups. Results: The hyperthyroid goiter patient mean UIE concentration was 278.98 µg/L and 68% of excess UIE which was found. There was significant difference in the UIE between the hyperthyroid goiter patient and control (P<0.001). The following types of goiter, based on palpation, were identified among the 100 hyperthyroid patients: Grade I – 4%, Grade II – 63%, and Grade III – 33%. There were elevated serum AMA levels with positive correlation of excess iodine for hyperthyroid goiter patient. Conclusion: In this study, there were excess UIEs among patients; hence, these associated complications, namely, benign goiter (14%), thyroiditis (43%), cancer of thyroid (4%), and thyrotoxicosis (39%) were observed. Key words: Goiter; Iodine-induced hyperthyroidism; Thyroiditis; Thyrotoxicosis; Urinary iodine excretion

INTRODUCTION

Iodine is an essential trace element required for the thyroid hormone synthesis. It is important for the growth and development of human life. It is regulate biochemical reactions of protein synthesis and enzymatic activity. The dietary iodine major sources of are water, sea food, and theiodized salt. The World Health Organization (WHO) iodine recommended daily intake for different age groups is given in (Table 1). Deficient or excessive iodine intake may affect thyroid gland size and functions. In worldwide, there are two billion people affected by iodine deficiency approximately. Deficiency of iodine causesisiodine deficiency disorders (IDD), including stunted physical growth, abortion, stillbirth, Squint deafness, neonatal cretinism, impaired mental abilities, hypothyroidism, and its complications. Universal salt iodination program was implemented to eradicate the IDD. Urinary iodine measurement is a good marker to measure the dietary iodine intake.
The iodine deficiency was eliminated by universal salt iodination from goiter endemic areas, but prevalence of goiter not been eliminated. The post iodination study reports say that due to iodine excess occurrence of thyroid-related disorders has been found a steady upward trend.\(^7,8\) It has been found that excess intake of iodine has associated with iodine-induced hyperthyroidism (IIH) and autoimmune thyroiditis due to increasing the chance of thyroid cell mutations by the stimulation and proliferation of thyroid follicular cells.\(^9\) IIH has been reported in many iodine supplementation programs study.\(^10\)

In our tertiary care hospital endocrine surgery unit, data shown steady upward trend graph of increasing occurrence of thyroid disorders in our region (Figure 1).\(^8\) This prompted us to investigate the iodine status among hyperthyroid goiter patients attending our hospital and to correlate with their thyroid function.

Aims and objectives

The aim of present study was to find the hyperthyroid goiter patient nutritional status by measurement of urinary iodine excretion (UIE) and correlate them with thyroid hormone and thyroid autoantibodies.

MATERIALS AND METHODS

In this study, the samples were collected from the patients of the Department of Endocrine Surgery, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai. One hundred hyperthyroid goiter patients and 100 age-matched normal adult were included in study. Urinary iodine estimation\(^11\) and serum TSH, fT4, fT3, AMA, and ATG were estimated for case and control groups.

Grading of goiter was determined according to the criteria recommended by the joint WHO/UNICEF/ICCIDD\(^12\) for all the goiter patients. All the patients with goiter underwent fine-needle aspiration cytology to diagnose the pathology of the goiter. Te99 scan: Patients who had toxic level of thyroxine underwent Te99 scan and uptake of thyroid for further confirmation and classification.

Statistical analysis

The data processing and analysis were done by STATA 13 version software. The quantitative data of case and control were presented as mean and standard deviation and comparison of means was done by student t-test. The categorical data analyzed by Chi-square (\(\chi^2\)). The non-parametric data were expressed as median and inter quartile range and comparisons among the groups were done using Kruskal–Wallis test. The Pearson’s correlation test was used to find associations between analyses.

RESULTS

The mean age of hyperthyroid goiter patient was 34.10±10.75 years, while the controls adult had 35.38±9.72 years. The mean urinary iodine excretion (UIE) patients group was 278.98±146.34 \(\mu g/L\), while the controls had 155.03±37.71 \(\mu g/L\) (Table 2). There was significant difference in the UIE between the hyperthyroid goiter patient and control (\(P<0.001\)). The result shows that excess UIE among the hyperthyroid goiter patients. The following types of goiter, based on palpation, were identified among the 100 hyperthyroid patients: Grade I – 4 %, Grade II – 63%, and Grade III – 33%.

Based on the results obtained, the patients were classified into two types:

Type I: UIE: Based on the urinary iodine level, the hyperthyroid goiter patients were classified into four groups as per WHO criteria (Figure 2). Only 15% of the hyperthyroid patients had iodine deficiency, while 68% had more than adequate iodine nutrition and among that 50% had very high excretion of iodine (>300 \(\mu g/L\)), while 17% had normal iodine status.

Type II: Pathophysiological classification: Based on the thyroid hormone profile, and antibody titters, the 100 hyperthyroid goiter patients were classified into four groups as thyroiditis (\(n=43\)), thyrotoxicosis subjects (\(n=39\)), benign (\(n=14\)) and

Table 1: WHO recommendations for Daily dietary intake of iodine

<table>
<thead>
<tr>
<th>Age or population group</th>
<th>Iodine intake in micrograms per day ((\mu g/day))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children 0-5 years</td>
<td>90</td>
</tr>
<tr>
<td>Children 6-12 years</td>
<td>120</td>
</tr>
<tr>
<td>Adults >12 years</td>
<td>150</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>250</td>
</tr>
<tr>
<td>Lactation</td>
<td>250</td>
</tr>
</tbody>
</table>

Figure 1: Patient statistics of department of endocrine surgery in a tertiary care hospital in South India\(^8\)
Pichandi, et al. The correlation between iodine nutrition and autoimmunity among hyperthyroid goiter patients

Asian Journal of Medical Sciences | Jul 2022 | Vol 13 | Issue 7

Cancer of thyroid (n=4) (Figure 3). The comparison was done among thyroiditis, thyrotoxicosis, benign, cancer of thyroid, and goiter patient's subjects, median value of urinary iodine was 305 (470–110), 300 (400–192), 190 (300–115), and 297.5 (435–187.5) (Table 3).

Pearson’s correlation was used to find the correlation and association between analysts. There was a significant positive correlation between UI and AMA (r=0.2278*) (P<0.05) in hyperthyroid patient’s subjects (Table 4 and Figure 4). Furthermore, a significant positive correlation between UI and ATG (r=0.2291*) (P<0.05) was found in those subjects (Table 4 and Figure 5).

DISCUSSION

Iodine is an important micronutrient required for the synthesis of thyroid hormone. Thyroidal size and functions may affected by deficient or excessive intake of iodine. In this study, we have taken 100 clinically proven hyperthyroid patients. The mean UIE of the study patients group was 278.98 µg/L, while the controls had 155.03 µg/L. Iodine excess is the hallmark that is observed among our patients in this study. These results showed that there is no iodine deficiency among the patients and the USI program has also eliminated the iodine deficiency as reported by many studies. We have found that 68% of hyperthyroid goiter patient had more than adequate iodine nutrition and among that 50% had very high excretion of iodine (>300 µg/L). The highest median urinary iodine concentration of 305 and 300 µg/L was found in thyroiditis and thyrotoxicosis of the study group.

All the complications known to be associated with excess iodine, namely, thyroiditis (43%), thyrotoxicosis (39%), benign goiter (14%), and cancer of thyroid (4%) have been observed in this study. Excess iodization one of cause to produces destruction of the follicle of thyroid resulting in thyroiditis. Furthermore, excess iodine stimulating the immune system that changes in the immunological status finally results in the production of autoantibodies which gradually destroying the thyroid glandular tissue.

Post iodine supplementation phase had found of accompanied in a change of the epidemiological pattern in cancer of thyroid with increasing prevalence of papillary cancer in autopsy study.

The mechanism at the pathophysiology of endemic goiter produced by iodine excess intake may involve to

Table 2: Case–control thyroid profile for adult group

<table>
<thead>
<tr>
<th>Variable</th>
<th>Case n=100</th>
<th>Control n=100</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Years)</td>
<td>34.10±10.75</td>
<td>35.38±9.72</td>
<td><0.001**</td>
</tr>
<tr>
<td>UIE(µg/L)</td>
<td>278.98±146.34</td>
<td>155.03±37.71</td>
<td><0.001**</td>
</tr>
<tr>
<td>TSH (micro IU/ml)</td>
<td>0.08±0.11</td>
<td>1.80±0.80</td>
<td><0.001**</td>
</tr>
<tr>
<td>FT4 (ng/dl)</td>
<td>4.33±2.70</td>
<td>1.62±0.20</td>
<td><0.001**</td>
</tr>
<tr>
<td>FT3 (pg/dl)</td>
<td>8.53±5.65</td>
<td>2.81±0.58</td>
<td><0.001**</td>
</tr>
</tbody>
</table>

Table 3: Patients with goiter presenting as various disorders of hyperthyroid

<table>
<thead>
<tr>
<th>Variable</th>
<th>THYROIDITIS MediantIQR N=43</th>
<th>TOXIC MediantIQR N=39</th>
<th>BENIGN MediantIQR N=14</th>
<th>PAP CA MediantIQR N=4</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI</td>
<td>305.0 (470–110)</td>
<td>300 (400–192)</td>
<td>190 (300–115)</td>
<td>297.5 (435–187.5)</td>
<td>0.2005</td>
</tr>
<tr>
<td>TSH</td>
<td>0.1 (0.06–01)</td>
<td>0.01 (0.04–0.01)</td>
<td>0.2 (0.3–0.1)</td>
<td>0.2 (0.3–0.1)</td>
<td>*0.0008</td>
</tr>
<tr>
<td>FT3</td>
<td>6.4 (12.1–5.3)</td>
<td>6.5 (10.2–5.4)</td>
<td>6.5 (10.1–3.1)</td>
<td>7.7 (12.9–3.1)</td>
<td>0.4755</td>
</tr>
<tr>
<td>FT4</td>
<td>4.0 (5.9–2.9)</td>
<td>3.9 (4.8–2.5)</td>
<td>2.0 (6.0–1.2)</td>
<td>3.9 (5.5–2.7)</td>
<td>0.8310</td>
</tr>
<tr>
<td>AMA</td>
<td>75.0 (75.8–74.6)</td>
<td>77.4 (78.0–74.7)</td>
<td>72.7 (74.6–71.2)</td>
<td>72.4 (75.2–70.9)</td>
<td>*0.0001</td>
</tr>
<tr>
<td>ATG</td>
<td>673.0 (673–132)</td>
<td>655 (974–132)</td>
<td>655.0 (888–492)</td>
<td>888.0 (944–510)</td>
<td>0.5068</td>
</tr>
</tbody>
</table>

*P<0.05 Statistically significant

![Figure 2: Classification based on urinary iodine excretion](image_url)
Pichandi, et al.: The correlation between iodine nutrition and autoimmunity among hyperthyroid goiter patients

Asian Journal of Medical Sciences | Jul 2022 | Vol 13 | Issue 7

 damage of thyroid parenchyma.16 Autoimmune growth factor like thyroid growth-stimulating immunoglobulin’s playing a major role in the pathogenesis of growth in thyroid of this condition.17

Limitations of the study
This small hospital-based study for urinary iodine concentration in hyperthyroid goiter patient may not be representative of community iodine nutrition and similar large number of sample required for community settings to find the iodine nutrition in hyperthyroid goiter patient.

CONCLUSION
Iodine is adequately available in the coastal regions of our country and Tamil Nadu with a large coastal area, the chances of iodine deficiency are much less. Universal salt iodination program has also eliminated the iodine deficiency as reported by many studies. Iodine excess is the hallmark that is observed among our patients in this study. All the complications known to be associated with excess iodine, namely, thyroiditis (n=43), thyrotoxicosis subjects (n=39), benign (n=14), and cancer of thyroid (n=4) have been observed in this study. Chronic exposure to excess iodine, which may ultimately create a generation of thyroid cripples, should be prevented by careful monitoring and regular follow-up of iodine supplementation. From this study, we would recommend that thyroid patients should be evaluated for autoimmune thyroiditis and thyroid function and urinary iodine.

ACKNOWLEDGMENT
The authors thanks faculty and staff members of Endocrine Surgery unit and Department of Biochemistry who have helped us for this work.

REFERENCES

Table 4: Correlation analysis in hyperthyroid goiter patients

<table>
<thead>
<tr>
<th></th>
<th>UI</th>
<th>TSH</th>
<th>FT4</th>
<th>FT3</th>
<th>AMA</th>
<th>ATG</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSH</td>
<td>0.0442</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT4</td>
<td>0.0731</td>
<td>-0.4126**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT3</td>
<td>0.0874</td>
<td>-0.4737**</td>
<td>0.6939**</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMA</td>
<td>0.2278*</td>
<td>0.1217</td>
<td>0.1878*</td>
<td>0.2343*</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATG</td>
<td>0.2291*</td>
<td>0.1771*</td>
<td>0.1624*</td>
<td>0.2396*</td>
<td>0.9537**</td>
<td>1</td>
</tr>
</tbody>
</table>

*P<0.05; **P<0.01

\[y = -0.186x + 618.2 \]
\[R^2 = 0.006 \]

Figure 3: Classification based on pathophysiology of goiter

Figure 4: UI versus AMA

Figure 5: UI versus ATG
Pichandi, et al.: The correlation between iodine nutrition and autoimmunity among hyperthyroid goiter patients

Author’s Contributions:
SP- Concept and design of the study, prepared first draft of manuscript; SJ- Reviewed the literature and manuscript preparation; JP- Concept, coordination, statistical analysis; GV- Help for manuscript preparation; RK- Manuscript editing, revision of the manuscript.

Work attributed to:
Madras Medical College and Govt.Rajiv Gandhi General Hospital, Chennai - 600 003, Tamil Nadu, India.

Orcid ID:
Dr. Suresh Pichandi - https://orcid.org/0000-0002-9254-5774
Dr. Sivakumar J - https://orcid.org/0000-0002-6944-7439
Janakiraman P - https://orcid.org/0000-0002-5802-8881
Dr. Ramadevi K - https://orcid.org/0000-0003-0602-6420

Source of Funding: None, Conflicts of Interest: None.