INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a disease with a wide range of phenotypic presentations and clinical syndromes ranging from acute respiratory distress syndrome (ARDS), severe metabolic syndromes, thromboembolic syndrome, severe acute tubular necrosis, various neurologic abnormalities, and cardiac events, including myocarditis and arrhythmias to acute viral encephalitis, infectious, toxic encephalopathy, and acute cerebrovascular disease, and possible epileptogenicity along with multiple organ dysfunction.\(^1,2\) Mechanisms of SARS-CoV-2 neurologic manifestations noted in the literature are: Direct infection injury through the blood circulation and neuronal pathways, hypoxic injury, immune-mediated injury, and angiotensin-converting enzyme II receptor-mediated injury, among others.\(^3,5\) Immune-mediated neurological manifestations known to date include Guillain-Barré and Miller-Fisher syndromes, polyneuritis cranialis, and acute demyelinating encephalomyelitis.\(^4\)

Anti-NMDAR encephalitis typically presents with cognitive and behavioral dysfunction, speech dysfunction, seizures, movement disorders, decreased level of consciousness, and autonomic instability. A paraneoplastic association with ovarian teratoma is also known.\(^2\) However, atypical manifestations in the form of the demyelinating syndrome, post-herpes virus encephalitis, and isolated epileptic
syndrome are also described. In addition, it was reported that anti-NMDAR antibody-positive patients very often do not fulfill the probable diagnostic criteria. We describe two patients with grey and white matter abnormalities suggestive of an inflammatory-demyelinating process associated with a prolonged hypoactive encephalopathy related to COVID-19 infection.

CASE SERIES

Case 1

A 21-year-old lady was presented with headaches, giddiness, and imbalance while walking for 5 days and decreased speech output for 4 days. She also had a fever and new-onset right focal seizures 1 day before admission, followed by persistent confusion, altered sleep, visual hallucinations, and mutism. On examination, she was tachypneic (RR-24/min), the temperature was 100.1°F, and oxygen saturation was 92% on room air. She was disoriented, had no sense of time, place, or person, and could not follow simple commands. In addition, she had terminal neck rigidity with a lack of movement in the right upper and lower limbs.

A nasopharyngeal swab for COVID-19 rapid antigen tested positive which was later verified with real-time polymerase chain reaction (RT-PCR) test. Her HRCT chest had right middle and lower lobe consolidation. Serum and cerebrospinal fluid (CSF) autoimmune encephalitis profiles showed an anti-NMDAR antibody strongly positive (Indirect immunofluorescence assay on transfected cell lines for qualitative determination). Ultrasonography of the abdomen and pelvis was normal. The patient had a normal metabolic panel, including thyroid profile, serum electrolytes, liver, and renal function tests, serum glucose, homocysteine, Vitamin B12, and folate. The CSF had one cell (lymphocyte), normal protein (16.2 mg/dL), and normal glucose (99 mg/dL). Septic workup showed high D-dimer, ESR, and CRP, with negative blood and urine cultures. Other workups, such as CSF for other viral and bacterial panels, were negative. T2-FLAIR hyperintensity was observed on magnetic resonance imaging (MRI) brain, involving bilateral caudate, putamen, frontal and parietal, insular, and temporal lobe cortices, with mild diffusion restriction and motor cortex sparing. Diffuse

Figure 1: Magnetic resource imaging brain of the first patient – T2-FLAIR hyperintensity noted involving bilateral caudate, putamen, bilateral frontal, and parietal, insular, temporal lobe cortices (1A). Enhancement of the pituitary stalk noted (1B)-mild diffusion restriction and sparing of the motor cortex (1C). Diffuse pachymeningeal enhancement was noted in the postcontrast study (1D). No areas of any blooming were noted

Figure 2: Electroencephalography of the first patient – bipolar montage showing intermittent theta slowing in bilateral temporal regions
Pachymeningeal enhancement was noted in the post-contrast study. Enhancement of the pituitary stalk was noted (Figure 1). Electroencephalography (EEG) showed intermittent theta slowing in bilateral temporal regions (Figure 2).

She was started empirically on antibiotics (acyclovir, ceftriaxone, and ampicillin). She also received remdesivir and phenytoin. During her hospital stay, she developed dystonic posturing of all four limbs, which improved on baclofen and trihexyphenidyl. She was treated with ten cycles of small volume plasmapheresis. The patient had a slow clinical recovery with improved consciousness and no further seizures. After 10 days of treatment, the COVID-19 test was negative, but the NMDA test remained strongly positive.

Case 2

This 65-year-old lady was presented with a 5-year history of slowly progressive recent episodic memory impairment for verbal and visual, a visuospatial deficit from the past 4 years, and a rapid worsening of these symptoms for the past 1 month. On examination, her vitals were normal. The patient appeared to be slightly disoriented in terms of time, place, and person. She had impaired attention, episodic memory, and visuospatial abilities with relatively normal language, praxis, and behavior. She had asymmetrical rigidity (left > right) with normal power, sensory, cerebellar functions and reflexes.

The nasopharyngeal swab COVID-19 RT-PCR test was positive, with HRCT chest being normal. The serum autoimmune encephalitis profile showed anti-NMDAR antibody positivity. Ultrasonography of the abdomen and pelvis was normal. A normal metabolic panel, including thyroid profile, serum electrolytes, liver and renal function tests, serum glucose, homocysteine, Vitamin B12, and folate. The CSF contained no cells and had normal protein (24.3 mg/dL) and glucose (69 mg/dL); the anti-NMDAR antibody in the CSF was negative. The CSF for other viral and bacterial panels was negative. MRI showed bilateral cerebral atrophy predominantly affecting parietotemporal regions. The cortical sulci and Sylvian fissures are prominent. Multiple discrete foci of T2/FLAIR hyperintensities are noted in the bilateral subcortical, deep, and periventricular white matter (2B). No diffusion restriction (2C), enhancement, and blooming were noted. The cortical sulci and Sylvian fissures are prominent (2D).
She was treated with injectable methylprednisolone for 3 days and an acetylcholinesterase inhibitor, donepezil, for long-standing memory disturbances, along with remdesivir. She improved partially in cognition with a full improvement in rigidity. On repeat, the COVID-19 RT-PCR test and serum anti-NMDAR antibody became negative.

We followed up with the patients for the next 5 months and found clinical improvement in both.

DISCUSSION

We described two cases of COVID-19 infection associated with anti-NMDAR antibody positivity (table 1). Although the second patient had a background of possible Alzheimer’s dementia, her unusual deterioration in the clinical course can be explained by COVID-19 infection with anti-NMDAR encephalitis. Both our patients showed significant recovery following immunotherapy with steroids and plasmapheresis.

Table 1: Review of literature of COVID-19 infection and NMDA encephalitis cooccurrence

<table>
<thead>
<tr>
<th>Author</th>
<th>Study type</th>
<th>Age</th>
<th>Sex</th>
<th>Country</th>
<th>Neurological symptoms associated</th>
<th>Autoimmune panel</th>
<th>Imaging</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burr et al., 2020^10</td>
<td>CR</td>
<td>23</td>
<td>F</td>
<td>USA</td>
<td>Encephalopathy, hyperkinetic movement of arms, legs, and head</td>
<td>NMDAR-IgG positivity in the serum (1:640)</td>
<td>Normal</td>
<td>IV steroids and IVIG</td>
<td>Baseline state after 2 weeks</td>
</tr>
<tr>
<td>Fakhri et al., 2021^11</td>
<td>CR</td>
<td>18</td>
<td>F</td>
<td>Iran</td>
<td>GTCS. Mood change as depression and anhedonia, lack of concentration, psychiatric symptoms (confabulations and delirious ideas), focal motor seizures with impaired awareness, and orofacial dyskinesia/ automatisms</td>
<td>CSF II FT- NMDA positive</td>
<td>Generalized brain edema</td>
<td>IV steroids and IVIG</td>
<td>2 months-full recovery</td>
</tr>
<tr>
<td>Monti et al., 2020^12</td>
<td>CR</td>
<td>50</td>
<td>M</td>
<td>Italy</td>
<td>Psychiatric symptoms (confabulations and delirious ideas), focal motor seizures with impaired awareness, and orofacial dyskinesia/ automatisms</td>
<td>CSF- NMDA positive</td>
<td>Normal</td>
<td>IV steroids, IVIG, and plasmapheresis</td>
<td>4 months-full recovery</td>
</tr>
<tr>
<td>Adelaide Panariello et al., 2020^13</td>
<td>CR</td>
<td>23</td>
<td>M</td>
<td>Italy</td>
<td>Psychomotor agitation, anxiety, thought disorganization, persecutory delusions, auditory hallucinations commanding voices, global insomnia dysphagia, dyskinesia, and autonomic instabilities</td>
<td>CSF- NMDA positive</td>
<td>NA</td>
<td>IV steroids and IVIG</td>
<td>Improved</td>
</tr>
<tr>
<td>Sarigecili et al., 2021^14</td>
<td>CR</td>
<td>7</td>
<td>M</td>
<td>Turkey</td>
<td>Unsteady gait, somnolence, seizures, choreiform movements in the hands and feet, tongue protrusion, bruxism, lip smacking, agitation, catatonia, and echolalia.</td>
<td>CSF NMDA-positive</td>
<td>Normal</td>
<td>IV steroids, IVIG and plasmapheresis</td>
<td>discharged with mild ataxia</td>
</tr>
<tr>
<td>Our study case one</td>
<td>CR</td>
<td>21</td>
<td>F</td>
<td>India</td>
<td>Encephalopathy, unsteady gait, altered sleep, visual hallucination, and mutism</td>
<td>Serum and CSF NMDA positive</td>
<td>T2/FLAIR hyperintensity bilateral frontal, temporal, parietal, striatum, and insula</td>
<td>Plasmapheresis</td>
<td>Improved</td>
</tr>
<tr>
<td>Our study case two</td>
<td>CR</td>
<td>65</td>
<td>F</td>
<td>India</td>
<td>Rapidly worsening dementia</td>
<td>Serum NMDA positive and CSF NMDA negative</td>
<td>Multiple T2/FLAIR hyperintensity in bilateral subcortical, deep and periventricular white matter</td>
<td>IV steroid</td>
<td>Improved</td>
</tr>
</tbody>
</table>

MRI diffusion images did not display diffusion restriction, rendering ischemia secondary to respiratory involvement due to COVID-19 infection unlikely. Studies have shown a significant role of elevated interleukin-6 (IL-6) in the pathogenesis of the complicated COVID-19 patients, similar to the anti-NMDAR antibody disease favoring similar immunopathogenesis. Additional mechanisms of indirect pathogenesis, such as molecular mimicry in which a viral epitope is structurally identical to an NMDAR epitope, could be another possible explanation of their cooccurrence(A). Few cases in the world of “COVID-19 infection with NMDA” reported to date are summarized in Table 1. Due to financial constraints, IL-6 was not measured in either of the patients. This was a limitation in our study.

To the best of our knowledge, this is the first report of anti-NMDAR encephalitis associated with a recent SARS-CoV-2 infection in Indian populations.

CONCLUSION

COVID-19 can affect both the central and peripheral nervous systems, despite being a respiratory pathogen. Anti-NMDAR encephalitis is a treatable entity. Understanding the rare association between COVID-19 infection and NMDA seropositivity can open up new avenues for fighting the virus and should be considered as a possibility during unexplained neurological worsening of COVID-19 infection.

REFERENCES

