Bacteriological profile of anaerobes in deep-seated abscess of patients attending a tertiary care hospital

Retina Paul1, Nabamita Chaudhury2, Saswati Chattopadhyay3, Rabindra Nath Misra4, Sankha Subhra Chaudhury5

1Associate Professor, Department of Microbiology, College of Medicine and JNM Hospital, Kalyani, 2Assistant Professor, 3Associate Professor, Department of Microbiology, Burdwan Medical College, Burdwan, West Bengal, 4Ex-Professor and HOD, Department of Microbiology, Dr. D.Y. Patil Medical College, Pune, Maharashtra, 5Senior Resident, Department of Ophthalmology, Jalpaiguri Medical College, Jalpaiguri, West Bengal, India

ABSTRACT

Background: Anaerobes are recognized as important human pathogens causing severe life threatening exogenous and endogenous infection if left untreated. Anaerobes are one of the most neglected pathogens in various clinical samples due to the problem in sample handling, technical difficulties in their cultivation, and identification along with prolonged turnaround time. Aims and Objectives: The present study was undertaken to identify the different anaerobic organisms associated with deep seated abscess and their association with various risk. Materials and Methods: Pus and fluid sample collected in sterile syringe or swab stick were immediately put in RCM and taken to the laboratory. Gram staining, ZN stain, and culture--both aerobic and anaerobic were done. Obligate anaerobes were checked for aerotolerance. Subcultures were done for identification of species level by Gram stain, colony morphology, biochemical tests, and final identification that were done by the Vitek 2 system. Results: Out of the 170 samples, 144 (84.70%) were culture positive and the rest 26 (15.29%) were culture negative; 101 (70.1%) were aerobic, 23 (16%) anaerobes, and 20 (13.9%) mixed aerobic and anaerobic. A total of 51 obligate anaerobes were isolated from various samples. Out of which 32 (62.74%) anaerobic Gram-positive cocci Peptostreptococcus anaerobius being the most common and 13 (25.49%) anaerobic Gram-negative bacilli Bacteroids fragilis being most common and 6 (11.76%) were anaerobic Gram-positive bacilli Actinomyces meyeri being the most common. Diabetes mellitus was a significant associated factor. Maximum number of anaerobes was isolated from abscess over oral cavity followed by gangrenous foot, scrotal abscess, and diabetic foot. Conclusion: Anaerobes are an important cause of deep-seated abscess—mostly being polymicrobial in nature. Incision–drainage and proper antibiotic therapy is necessary for their early control and prevention of complications.

Key words: Anaerobic bacteria; Deep-seated abscess; Anaerobic Gram positive bacilli; Anaerobic Gram negative bacilli

INTRODUCTION

Anaerobes are important members of the normal flora of the body in the skin and mucous membranes. They are responsible for various endogenous bacterial infections in any organ or system of body leading to severe life-threatening infections if left untreated.1–3 Conditions such as trauma, poor blood supply, vascular stasis leading to tissue necrosis, and lowered oxidation – reduction potential in tissue provide favorable conditions for the anaerobes to multiply.4 Handling of specimen containing anaerobic organisms is very much challenging due to their susceptibility to environmental oxygen, technical difficulties in cultivation, cost, and most importantly prolonged
turnaround time leading to delayed report to the clinicians. This leads to failure of detection of the different anaerobes responsible for various infections.

Abscess is a localized collection of purulent inflammatory tissue suppuration in a tissue or organ developing because of introduction of commensal flora into a sterile body site due to some cause and becoming fatal if left untreated.

Deep-seated abscesses are collection of pus or microorganisms in the deep spaces of body, commonly encountered in surgical wards. They are usually polymicrobial in nature with both aerobic and anaerobic bacteria being the causative agents of infections such as liver abscess, splenic abscess, appendicular abscess, perianal abscess, orofacial infections, empyema, clostridium myonecrosis, peritoneal, and pleural spaces.

Identification of the causative agents, appropriate antibiotic therapy, and surgical drainage is the treatment of choice. Commonly encountered anaerobic pathogens in the clinical samples include Peptostreptococcus species, Bacteroids fragilis, Prevotella species, Porphyromonas species, and others.

Aims and objectives
The aim of the present study was to determine the frequency of anaerobic isolation from various deep-seated abscesses and their association with various risk factors.

MATERIALS AND METHODS
A prospective study was conducted in the microbiology department of Dr. D.Y. Patil Medical College, Hospital, and Research Centre, Western India, for 2 years from July 2011 to September 2013. Deep seated pus and fluid samples were collected from 170 suspected patients admitted to the surgical, medicine, orthopedics, otolaryngology, gynecology, and pediatrics ward along with other intensive care units of hospital. The study was conducted after Institutional Ethical Committee clearance. The demographic information, clinical presentations, risk factors (comorbidities), and other laboratory parameters were collected along with the specimens—tissue, pus aspirate, and wound swab.

Pus samples from deep-seated abscesses were aspirated aseptically with a sterile syringe and needle. In case of insufficient samples, swabs were collected from the floor of ulcer or depth of abscess, immediately put into Robertson’s cooked meat (RCM) medium and immediately taken to the microbiology laboratory.

Macroscopic examination of the samples was done. A foul odor, presence of necrotic tissue, and sulfur granules were valuable clues for possible presence of anaerobes. Microscopic examination was done for every sample for cellular characteristics and Gram stain were done which provided idea about bacteria along with their shape and size. Other definitive morphological features of bacteria such as presence of spore, branching filaments, and pointed ends were noted. ZN stain was performed for each sample to exclude presence of acid fast bacilli.

The specimens were inoculated for anaerobic culture into RCM broth, non-selective media Brucella blood agar enriched with Vitamin K and hemin and selective and differential media Bacteroides bile esculin agar for preliminary identification. Inoculated RCM broth was incubated for 7 days and subculture was done on 5% sheep blood agar. All the plates were incubated in anaerobic gaspak jar (BD diagnostics) at 37°C and opened 48–72 h later for inspection of the plates. The specimens were also inoculated on Maconkey agar and 5% sheep blood agar for identification of aerobic organisms, if any.

Preliminary identification of anaerobic isolates was done by colony morphology, Gram stain, aerotolerance test on chocolate agar, fluorescence under long wave (365 nm) ultraviolet light, biochemical reactions such as catalase test, indole test, nitrate reduction test, and sugar fermentation tests. Automated microbial identification systems–VITEK 2 ANC (Anaerobic and Corynebacterium) ID card (BioMérieux) was used for species level identification.

RESULTS
A total 170 samples were tested for anaerobic culture from various anatomical sites during the study period in microbiology laboratory in our tertiary care hospital. Out of this, 144 (84.70%) samples showed positive culture of growth of aerobic, anaerobic, or mixed growth. The remaining 26 (15.30%) samples did not show any growth and thus were culture negative; hence, were considered as sterile cultures (Table 1).

Out of 170 cases, 40 patients (23.5%) presented with diabetes mellitus which was significantly higher than other history of illness. About 6 patients (3.5%) presented with vascular abnormalities and 3 patients (1.8%)

| Table 1: Distribution of type of culture positive cases (n=144) |
|-----------------------------------|--------------|-------|
| Type of culture positivity | Number | % |
| Aerobic isolates | 101 | 70.1 |
| Anaerobic isolates | 23 | 16.0 |
| Mixed aerobic and anaerobic infections | 20 | 13.9 |
| Total | 144 | 100.0 |
presented with pre-existing malignancy for which they had received chemotherapy for prolonged period. Rest of the 121 (71.2%) cases did not give history of any illness (Table 2).

Out of 23 anaerobic infections, 17 (73.91%) infections were only anaerobic monomicrobial infections which was significantly higher (P<0.01) and 6 (26.08%) samples were anaerobic polymicrobial infections (Table 3).

Out of 144 positive samples, 20 (13.88 %) samples showed mixed aerobic and anaerobic bacteria--30 aerobic 22 anaerobic bacteria (Table 4).

Fifty-one anaerobes were isolated from various deep seated abscesses. Of these 51, 32 (62.74%) were Gram-positive anaerobic cocci, 13 (25.49%) were Gram-negative anaerobic bacilli, and 6 (11.76%) were Gram-positive anaerobic bacilli. In our study, Gram-positive anaerobic cocci were predominantly isolated (62.74%) and Peptostreptococcus anaerobius 13 (25.49%) was the most common isolate followed by Peptostreptococcus micros 06 (11.76%). Among the Gram-negative anaerobic bacilli, B. fragilis 07 (13.72%) was the most common isolate. Among Gram-positive anaerobic bacilli, Actinomyces meyeri 03(5.88%) was predominant (Table 5).

Figure 1 demonstrates the frequency of the samples isolated from the different sites of the body.

DISCUSSION

Anaerobes are significant component of normal flora mostly present over the mucosal membrane generally arising from the host’s own endogenous flora. They get entrance into the body of the host through penetrating wound as a result of trauma, accident, or surgical procedures for abscesses of the liver, brain, lung or appendicitis, peritonitis, chronic otitis media and sinusitis, endophthalmitis, endocarditis, myonecrosis, and gas gangrene. They may also enter the body causing different dental and oral infections sometimes leading to serious life-threatening septicemia.

Table 2: Distribution of history of illness (risk factors) in the patients of deep seated abscesses

<table>
<thead>
<tr>
<th>History of Illness</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes mellitus</td>
<td>40</td>
<td>23.5</td>
</tr>
<tr>
<td>Vascularity compromised</td>
<td>06</td>
<td>3.5</td>
</tr>
<tr>
<td>Malignancy</td>
<td>03</td>
<td>1.8</td>
</tr>
<tr>
<td>Nil</td>
<td>121</td>
<td>71.2</td>
</tr>
<tr>
<td>Total</td>
<td>170</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 3: Distribution of pure anaerobic polymicrobial infections

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Type of abscess</th>
<th>Anaerobes isolated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Gangrenous foot</td>
<td>Peptostreptococcus nigren, Peptostreptococcus anaerobius, Bifidobacterium species</td>
</tr>
<tr>
<td>2.</td>
<td>Pyometra</td>
<td>Peptostreptococcus anaerobius, Peptostreptococcus magnus, Bacteroides fragilis</td>
</tr>
<tr>
<td>3.</td>
<td>Perforative peritonitis</td>
<td>Peptostreptococcus magnus, Bacteroides fragilis</td>
</tr>
<tr>
<td>4.</td>
<td>Gangrenous foot</td>
<td>Peptostreptococcus anaerobius, Peptostreptococcus magnus</td>
</tr>
<tr>
<td>5.</td>
<td>Brain abscess</td>
<td>Peptostreptococcus magnus, Bacteroides fragilis</td>
</tr>
<tr>
<td>6.</td>
<td>Palatal abscess</td>
<td>Peptostreptococcus anaerobius, Prevotella melaninogena</td>
</tr>
</tbody>
</table>

Table 4: Distribution of organisms in mixed aerobic and anaerobic infections

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Type of abscess</th>
<th>Aerobic bacteria</th>
<th>Anaerobic bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Scrotal abscess</td>
<td>MRSA, E. coli, MSSA</td>
<td>Peptostreptococcus acnes, Peptostreptococcus anaerobius</td>
</tr>
<tr>
<td>2.</td>
<td>Chronic osteomyelitis</td>
<td>Proteus mirabilis, Group D streptococcus</td>
<td>Peptostreptococcus acnes, Proteus mirabilis</td>
</tr>
<tr>
<td>3.</td>
<td>Gangrenous foot</td>
<td>Proteus mirabilis, Streptococcus</td>
<td>Peptostreptococcus acnes, Peptostreptococcus magnus</td>
</tr>
<tr>
<td>4.</td>
<td>Diabetic foot</td>
<td>E. coli, Pseudomonas aeruginosa, MSSA, Klebsiella pneumonia</td>
<td>Peptostreptococcus acnes, Acinetobacter</td>
</tr>
<tr>
<td>5.</td>
<td>Infected socket</td>
<td>MSSA, Streptococcus viridans, Streptococcus viridans</td>
<td>Fusobacterium nucleatum, Peptostreptococcus micros</td>
</tr>
<tr>
<td>6.</td>
<td>Appendicular abscess</td>
<td>E. coli</td>
<td>Peptostreptococcus anaerobius, Bacteroides fragilis</td>
</tr>
<tr>
<td>7.</td>
<td>Perianal abscess</td>
<td>E. coli</td>
<td>Peptostreptococcus acnes, Peptostreptococcus anaerobius</td>
</tr>
<tr>
<td>8.</td>
<td>Space infection</td>
<td>Klebsiella oxytoca, MSSA, Acinetobacter sp.</td>
<td>Peptostreptococcus micros</td>
</tr>
<tr>
<td>9.</td>
<td>Palatal abscess</td>
<td>MSSA, Pseudomonas aeruginosa</td>
<td>Peptostreptococcus acnes, Fusobacterium nucleatum</td>
</tr>
</tbody>
</table>
The present study was undertaken to isolate anaerobes from various deep seated abscesses. One hundred and seventy patients presenting with different deep seated abscesses especially close to mucosal surface were included in our study. Out of the 170 samples, 144 (84.70%) samples were culture positive and 26 (15.29%) samples were culture negative. In 2009, Zimmerman et al., reported 80% culture positivity of the samples from various operatively drained abscess including aerobe and anaerobes which is similar to our study.

Peripheral arterial occlusive disease is also associated with deep-seated abscess probably because this leads to reduced blood supply to the lower extremities making them prone to infection by various anaerobes.

We found from our study that aerobic isolates were significantly higher (70%) than the anaerobes. Similar results have been reported by Gupta et al., and Set et al., who obtained 14% and 18.7% anaerobes from pyogenic lesions and wound infections concordant to our study. In another study, mixed infections were obtained 35% from intra-abdominal infections which differ from our study probably due to difference in site of infections.

In our study, we have isolated 13 anaerobic Gram-negative bacilli (25.49%) from various clinical specimens — B. fragilis (n=7) was most commonly isolated anaerobes from various intra-abdominal and soft-tissue infections. Similar results were reported by others where B. fragilis was frequently isolated as microorganism from various surgical infections. If the infection left untreated, the mortality rate may very high up to 60%.

In our study, a wide range of anaerobes was isolated from devitalized tissue or from patients with impaired immune status. Foul smelling discharge, presence of gas or crepitus, and infections confined to mucosal surface are the clinical clues for suspect an anaerobic infection.

Now a days, there is an increased incidence of antimicrobial resistance among anaerobes and knowledge of distribution of organisms that may assist in selection of appropriate empirical therapy for anaerobes.

Limitations of the study
This study was done on small number of sample; larger study are required to confirm the result.

CONCLUSION
Anaerobes are the most neglected and overlooked microorganisms in recent culture-based diagnostics. Role of anaerobes should be recognized by both clinician
and microbiologist to provide adequate patient care and decrease the incidence of therapeutic failure.

ACKNOWLEDGMENT

We are thankful to all the patients who have participated in this study.

REFERENCES

https://doi.org/10.1086/514720

https://doi.org/10.1128/CMR.00008-07

https://doi.org/10.3201/eid0702.010214

https://doi.org/10.1007/s005200050146

https://doi.org/10.1016/0030-4220(81)90072-4

https://doi.org/10.1086/341931

https://doi.org/10.1111/1574-6976.12005

https://doi.org/10.1016/s0195-6701(97)90148-1

Authors’ Contributions:

RP- Conception and designing of the work, data collection, statistical analysis and interpretation, and prepared first draft of manuscript; NC- Data analysis and interpretation, reviewed the literature, and manuscript preparation; SC- preparation of manuscript and revision of the manuscript; RNM- preparation of manuscript and review; and SSC- preparation of manuscript and review.

Work attributed to:

Dr. D.Y. Patil Medical College, Hospital, and Research Centre, Pune - 411 018, Maharashtra, India.

ORCID ID:

Dr. Retina Paul- https://orcid.org/0000-0002-2205-6596
Dr. Nabamita Chaudhury- https://orcid.org/0000-0001-7929-6294
Dr. Saswati Chattopadhyay- https://orcid.org/0000-0002-0945-4637
Dr. Rabindra Nath Misra- https://orcid.org/0000-0003-0666-0926
Dr. Sankha Subhra Chaudhury- https://orcid.org/0000-0002-4062-6214

Source of Funding: None, Conflicts of Interest: None.