Seroprevalence of brucellosis among the high-risk population in Ujjain district, Madhya Pradesh

Riddhi Pradhan1, Anand Bhadkariya2, Vidit Khandelwal3, Vishal Diwan4, Waghe SR5, Deepak Saxena6, Shah H7, Manju Purohit8,9

1Associate professor Department of Microbiology, 2Associate Professor, Department of Community Medicine, 3Veterinary Officer, Department of Pharmacology, 4Professor and Head, Department of Pathology, R. D. Gardi Medical College, Ujjain, India, 5Professor, Department of Pathology Goverment Medical College, Datia, Madhya Pradesh, India, 6Scientist-E and Head Environmental Monitoring & Exposure Assessment(Water & Soil) ICMR-National Institute of Research in Environment Health, Bhopal, Madhya Pradesh, India, 7Professor, Department of Community Medicine Indian Institute of Public Health, Gandhi Nagar, Gujarat, India, 8Professor, Department of Community Medicine Indian Institute of Public Health, Gandhi Nagar, Gujarat, India, 9Professor, Department of Pathology, R. D. Gardi Medical College, Dhanu, Maharashtra, India, 9Professor, Department of Public Health Science, Karolinska Institute, Sweden

ABSTRACT

Background: Brucellosis is the most common zoonotic disease caused by Gram-negative coccobacillus belonging to genus Brucella. It is a recognized public health problem in developing countries including India. Aims and Objectives: The aims of these study were to determine the seroprevalence of brucellosis in population having occupation dealing with animals and thus are in close contact of animals. Materials and Methods: The study was conducted in semi-urban areas of central India. Blood samples were collected from personnel working in slaughter houses, meat shops, and veterinarians and their close contact and who are willing to participate in study. A total 102 samples collected randomly from butchers (n=20), veterinarians (n=29), and animal handlers (n=53) and were tested for Brucella abortus and Brucella melitensis by a commercial kit which allows the detection of both complete (IgG and IGM) and incomplete antibodies. Results: A total 102 subjects were included in the study and overall prevalence of brucellosis among high-risk group was found to be 2.9%. One veterinarian doctor was also found positive for both B. melitensis and B. abortus. Highest prevalence of brucellosis was found in veterinarians (6.8%) followed by animal handlers (1.8%), and none of the butcher was tested positive for any of the Brucella antibody. Conclusion: The present study screened all possible known high-risk groups for brucellosis and revealed that veterinarians have high chances of getting the infection. Occupation-related disease like brucellosis needs regular surveillance and integration into control and prevention program at a local and national level.

Key words: Brucellosis; High risk; Prevalence; India

INTRODUCTION

Brucellosis is the most common zoonotic disease caused by Gram-negative Coccobacillus belonging to genus Brucella that leads to considerable morbidity and loss of man-day across the globe and thus perpetuates poverty. It is a recognized public health problem in low- and middle-income countries including India. A high prevalence in certain geographic areas is well recognized, although largely underestimated. More than 500,000 new cases are reported each year, and according to the World Health Organization, this figure underestimates the magnitude of the problem. Epidemiological evidence shows that in India, brucellosis is present in different species in farm animals including cattle, goat, camel, horses, and pigs. Brucella melitensis and Brucella abortus are of major concern in India. Brucellosis is almost invariably transmitted to men from infected...
domestic animals. Milk and milk products are common sources of infection. The raw milk, clotted cream, and unevenly heated milk can harbor live *Brucella* organisms. Seropositivity among animal handlers, veterinarians, and dairy workers has also been documented from India.4,7 Due to the deceptive nature of clinical signs and symptoms of the disease, it may be easily misdiagnosed or diagnosed as pyrexia of unknown reason. The infection may remain subclinical or in latent form among the high-risk persons, thereby underestimating the true incidence of brucellosis. In spite of high prevalence of animal brucellosis, the human disease has not been much studied.

The laboratory diagnosis of Brucellosis is again challenging as the culture sensitivity is very poor especially in chronic cases. The IgG antibodies in chronic disease can be detected by the 2 Mercaptoethanol (2ME) test and the Comb’s test. STAT titers of 1:160 and above are diagnostic, but the cutoff limit of antibody titer should be considered according to the herd immunity of the community and a local base line cutoff titer should be determined and addressed. Furthermore, immunocapture agglutination assay can detect the IgG antibodies with higher sensitivity and specificity.8

Ujjain has a population of 6.18 million with semi-urban and rural population, most of which is prone to handle animals for various reasons. We have studied the seroprevalence of brucellosis among the high-risk population as butchers, veterinarians, and animal handlers, and their contacts and to correlate the seroprevalence with the sociodemographic information of the study subjects.

**Aims and objectives**
The aim of these study to determine the seroprevalence of brucellosis in population having occupation dealing with animals and thus are in close contact of animals.

**MATERIALS AND METHODS**
The study was approved (no. 50/2016) by ethical committee of R. D. Gardi Medical College, Ujjain. The written informed consent was taken from the participants by visiting the butcher houses and their shops, veterinarians, and animal handlers.

The study was conducted in rural areas of Ujjain, Madhya Pradesh. Personnel working in slaughter houses, meat shops, and veterinarians and their close contact and who are willing to participate in study were contacted and interview for their sociodemographic characteristics and information related to risk of acquiring *Brucella* infection. The data were collected in the predesigned pro forma. Participants were simultaneously educated regarding the risk of transmission and measures to prevent brucellosis. Persons who were not involved in animal handling and no potential risk for brucellosis as evident from history, were excluded from the study.

5 mL of blood was collected with all sterile precautions in plain and EDTA vials using vacutainers. Blood was properly labeled and transported to the Central Clinical laboratory of RD Gardi Medical College in a cold box within 12 h of collection. After separating serum by centrifuging at 6000 g for 15 min, it was kept in refrigerator on (2–8°C) until tested. The serum samples were tested using commercially available kit for *B. abortus* (*Brucella* CAPTVirCell Span supply by Merill diagnostics, India) which works on principle of single step immunocapture assay to detect both complete and incomplete antibodies. Simultaneously, the serum was also tested for *B. melitensis* (*BRUCEL A/M, Tulip Diagnostics India*) a tube agglutination test to detect total, IgG, and IGM antibodies. The serum agglutination test and microtiter plate test use phenol-killed whole S-cells to detects antibodies against S-LPS antigen of *Brucella*. Seropositive participants were referred to CR Gardi Hospital associated with R.D. Gardi Medical College for further clinical evaluation and management.

All statistical analysis was done by SPSS software version 23 for presentation of different variable applied and describe by Chi-square test, it was divided in seronegative and seropositive group for all risk factors. Then, titer of ≥ 1:160 was considered positive for presumptive identification of Brucellosis in high-risk subjects.6,6

**RESULTS**
Blood samples of 102 high-risk persons including butchers (n=20), veterinarians (n=29) (including doctors and supporting staff) animal handlers, and their close contacts (n=53) were tested in the study. All participants were tested for both *B. abortus* and *B. melitensis*. Overall, the prevalence of brucellosis among high-risk group in our study was found to be 03 (2.9%) (Table 1).

*B. abortus* CAPT, microtiter variant of tube agglutination done for *B. abortus*, was found positive in 03/102 (2.95%) participants, while one participant was found positive for *B. melitensis* antibodies. One veterinarian doctor was positive for both *B. melitensis* and *B. abortus*. Highest prevalence of brucellosis was found in veterinarians 02/29 (6.8%) followed by 01/53 (1.88%) in animal handlers and none of the butcher was found positive for significant titer of *Brucella* antibody (1:160).
The age ranged from 18–72 years; mean age 32.36±11.91 years; of whom n=70 (67%) were male and n=32 (33%) were female (Table 2). Most (n=59) of the participants have attained graduation and approximately 26.4% were Muslims having non-vegetarian diet (50%). Hand hygiene was found poor as most (86%) of the participants were washing their hands with only water and higher positives 6.6% of participants were not using gloves while handling animals or animal products which were statically significant (P=0.04).

History of animal handling was present in 38% for 11–20 years, in 25% for <10 years, and 5% reported to have a duration of job >41 years. Forty-four participants (43.1%) were performing animal handling for >7 h in a day (Table 3), of which 6.81% participants were found seropositive with statistical significance of P=0.04 (Table 3), 58 (56.8%) were involved in their job for <7 h in a day.

**DISCUSSION**

We, to the best of our knowledge, are first to screen and determine the prevalence of brucellosis in the high-risk population from semi-urban areas in western Madhya Pradesh. Brucellosis is one of the most common zoonotic diseases in the world. Certain occupations are considered to carry high risk such as abattoir workers, veterinarians, butchers, meat inspectors, and farmers. Our study noted 2.9% of prevalence of Brucellosis among high-risk group as was noted previously by Yohannes and Gill. A study by Agasthya et al., revealed that the prevalence of Brucellosis was 6.18% in veterinary supervisors, 2.06% in shepherds, and 1.03% in butchers. Similar study conducted by Thakur and Thapliyal revealed a prevalence rate of 4.9% in samples obtained from persons exposed to animals. The prevalence of brucellosis has been widely reported in different regions such as in Orissa (6.8%) and in Andhra Pradesh (11.51%) which are much higher than present study findings. We have not detected any butcher with significant titter of Brucella antibody this may be due to awareness of brucellosis in butchers. A study from Nigeria confirmed the endemic brucellosis, especially bovine brucellosis among slaughtered cattle at the abattoir, hence making it a source of occupational hazard to workers who were directly involved in the processing of meat from animals.

We found that the female participation was less (n=32) which may be due to less number of females participating in the potential hazardous activities such as slaughtering and handling animals. All seropositive cases were male. Worldwide, brucellosis is more likely to occur in males rather than in females, as seen in various. This is, however, in contrast with a study by Hussein et al., who reported relatively higher incidence among females. Thus, the possible for higher prevalence of Brucellosis in male can be due to higher exposure to potential risk factors, though both are equally susceptible for acquiring the infection as gender does not influence the immune response to Brucella.

We found that only 14% of study participants use soap to wash their hands which are lower than a study conducted by Ismayilova et al., where 38% of high-risk population was washing hands after handling animals. Against the presumption that the risk of infection should be higher in

**Table 1: Results of serological tests for brucellosis (n=102) (titer≥1:160)**

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
<th>B. Abortus (N=3)</th>
<th>B. Melitensis (%)</th>
<th>Both (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butchers</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Veterinarians</td>
<td>29</td>
<td>02 (6.8)</td>
<td>01 (2.6)</td>
<td>01 (2.6)</td>
</tr>
<tr>
<td>Animal handlers</td>
<td>53</td>
<td>01 (1.88)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>102</td>
<td>03 (2.95)</td>
<td>01 (0.98)</td>
<td>01 (0.98)</td>
</tr>
</tbody>
</table>

*B. Abortus: Brucella Abortus, B. Melitensis: Brucella Melitensis*

**Table 2: Sociodemographic characteristics, participants (n=102) included in this study**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Butcher (n=20)</th>
<th>Veterinarian (n=29)</th>
<th>Animal Handler (n=53)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>20</td>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>Female</td>
<td>00</td>
<td>06</td>
<td>26</td>
</tr>
<tr>
<td>Religion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hindu</td>
<td>00</td>
<td>27</td>
<td>23</td>
</tr>
<tr>
<td>Muslim</td>
<td>20</td>
<td>02</td>
<td>06</td>
</tr>
<tr>
<td>Diet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetarian</td>
<td>00</td>
<td>16</td>
<td>35</td>
</tr>
<tr>
<td>Non-Vegetarian</td>
<td>20</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>Education Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illiterate</td>
<td>11</td>
<td>06</td>
<td>26</td>
</tr>
<tr>
<td>Literate</td>
<td>09</td>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>Use of Gloves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>17</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>No</td>
<td>03</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td>Hand Washing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>18</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>Soap</td>
<td>02</td>
<td>09</td>
<td>03</td>
</tr>
<tr>
<td>Hand Wipe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same Napkin</td>
<td>19</td>
<td>02</td>
<td>41</td>
</tr>
<tr>
<td>Different Napkin</td>
<td>01</td>
<td>27</td>
<td>12</td>
</tr>
<tr>
<td>Injury on Hand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>01</td>
<td>02</td>
<td>02</td>
</tr>
<tr>
<td>Absent</td>
<td>19</td>
<td>27</td>
<td>51</td>
</tr>
</tbody>
</table>
population who have higher duration (in years) of exposure of handling animals, but we have not found any correlation between the duration of exposure and the number of individuals who tested positive and studies have shown that seropositivity decreases in population who have worked for over >40 years. This might be due to the reason that with increased duration of experience the individual must be careful while handling animals. Furthermore, in our population level of academic education did not influence brucella seropositivity, similar finding were reported by Yohannes and Gill.

We have included equal number of vegetarian and non-vegetarian population in our study, but we have not found any association of eating habits with the seroprevalance.

We did not found that any association between any medical illness such as diabetes, hypertension or any chronic illness, and long-lasting fever during past 6 months in contrast seropositivity for brucellosis was observed among pyrexia of unknown origin cases, animal handlers, and dairy workers in Goa, India. The asymptomatic infections are detectable by serological tests, especially IgG antibodies. The incidence of human brucellosis (321 cases annually) in the study by Kumar et al., has shown that it is a serious disease present in the population. In India, the prevalence of animal brucellosis has been well studied.

As brucellosis is a zoonotic diseases and it mainly transmitted through contact of disease animal or their products. Prevention is dependent upon increasing public awareness through health education programs and safe livestock practices. Active cooperation between health and veterinary services should be promoted. This study will help in prevention of brucellosis as high-risk group were screened and the participants were educated for safe livestock handling to take precautions during occupational activities and hand hygiene. Such type of small studies can give an idea of local seroprevalence of Brucellosis and with the help of this guidelines can be formulated for screening for high-risk individuals by easily available standard tube agglutination or ELISA tests.

Limitations of the study
The study has some limitations such as though we have screened the known high-risk groups with immune capture agglutination assay (Brucella Capt) which detects both agglutinin and incomplete antibodies, but the serological tests are not specific though good for screening the population, the positives result should be confirmed by other tests like culture, polymerase chain reaction based technique. Large scale study would be better alternates for detection of brucellosis in future.

CONCLUSION
The present study revealed that veterinarians have high prevalence of brucellosis among high-risk groups and to deal with such occupation-related disease as brucellosis regular surveillance of the disease needs to be integrated into control and prevention program at a local and national level, knowledge of risk factors is vital in control and prevention of brucellosis.

ACKNOWLEDGEMENT
We are thankful to Dr. V.K. Mahadik, Medical Director, R.D.Gardi Medical College for allowing us to conduct this
study. Indian Institute of Public Health, Gandhi Nagar for providing fund and all the technical staff of Department of Microbiology for providing technical assistance. We also extend our thank to study participants for their cooperation.

REFERENCES


Authors Contribution:
HS, VD, DS, MP.- Were responsible for the conceptualizing the study design. RP, AB, HS, MP.- were involved in microbiological work and analysis. VK.- Helped with statistical analysis and in preparation of first draft of the manuscript. SRB.- Provided assistance for data collection. All authors contributed in the development of final MS and approved it.

Work attributed to:
R.D. Gardi Medical College, Surasa, Ujjain, India.

Orcid ID:
Dr. Riddhi Pradhan - https://orcid.org/0000-0003-1848-2370
Dr. Anand Bhadkariya - https://orcid.org/0000-0001-6413-9421
Dr. Vidit Khandelwal - https://orcid.org/0000-0003-4161-6381
Dr. Manju Purohit - https://orcid.org/0000-0001-5835-7305
Dr. Vishal Diwan - https://orcid.org/0000-0001-7948-8579
Dr. Deepak Saxena - https://orcid.org/0000-0003-0563-4259
Dr. Harshada Shah - https://orcid.org/0000-0002-5982-1909
Dr. S. R. Waghe - https://orcid.org/0000-0002-4473-8977

Source of Funding: Funding was provided by Indian Institute of Public Health, Gandhi Nagar. Conflict of Interest: None.

Asian Journal of Medical Sciences | Oct 2022 | Vol 13 | Issue 10 187