INTRODUCTION

Scrub typhus, also known as tsutsugamushi disease caused by *Orientalia tsutsugamushi*, is the most common Rickettsial infection in India. The infection is transmitted through the larval mites or “chiggers” belonging to the family Trombiculidae. Small rodents, particularly wild rats of subgenus *Rattus*, are natural hosts for scrub typhus and humans are accidental hosts. The incidence of scrub typhus is higher among rural populations. Cases are more likely to have exposure to rodents at home or at work, which expose them to the risk of encountering chiggers sitting in grass blades, bushes, and shrubs. The disease is seasonal in many parts of India, which correlates with the appearance and activity of mites.1,2 Scrub typhus commonly manifests as an acute febrile illness with multi-system involvement. The usual initial presentation is fever with headache, congested face, and lymphadenopathy. Serious complications usually occur in the 2nd week of illness, which include acute respiratory distress syndrome (ARDS), pneumonia, meningitis, acute kidney injury, myocarditis, severe thrombocytopenia, and
bleeding. Other neurological complications include seizure, cranial nerve deficits, vasculitis cerebral infarct, brain hemorrhages, polyneuropathy, sensorineural hearing loss, and meningitis. These manifestations may be due to direct invasion of central nervous system (CNS) by the organism as has been shown by polymerase chain reaction of cerebrospinal fluid (CSF) or may be due to the unique propensity of the organism to infect vascular endothelial cells, thereby causing micro infarct. The purpose of this study was to characterize the clinical and laboratory findings in children with scrub typhus.

Aims and objectives

- To study the clinical and laboratory spectrum of scrub typhus in children.

- To compare the children admitted with scrub typhus with and without meningitis.

MATERIALS AND METHODS

A prospective observational study was conducted in the Department of Pediatrics at a tertiary care teaching hospital, Dehradun, Uttarakhand. The duration of the study was 12 months.

Inclusion criteria

All children up to 18 years of age with undifferentiated febrile illness lasting for 5 or more days with or without eschar were screened for scrub typhus and investigated accordingly. Serologically confirmed scrub typhus cases were enrolled in the study. The diagnosis was confirmed by IgM ELISA test (Scrub typhus detect TM IgM ELISA system, in BIOS International, Inc. Seattle, USA). Scrub typhus meningitis was diagnosed by CSF analysis, those having a CSF pleocytosis of 5 cells/mm³, thereby causing micro infarct.

Serologically confirmed scrub typhus cases were accordingly. Serologically confirmed scrub typhus cases were enrolled in the study. The diagnosis was confirmed by IgM ELISA test (Scrub typhus detect TM IgM ELISA system, in BIOS International, Inc. Seattle, USA). Scrub typhus meningitis was diagnosed by CSF analysis, those having a CSF pleocytosis of 5 cells/mm³, thereby causing micro infarct.

Other complications reported were hepatitis 2 (4.3%), hepatosplenomegaly in 18 (38.3%), ARDS 2 (4.3%), and shock 31 (66%), as shown in Table 1. Among the major non-neurological complications, shock was present in 31 (66%) of total scrub patients, while, in non-meningitis patients only 20 (66.7%) and in 11 patients (64.7%) among meningitis groups with significant difference (P<0.05).

However, on laboratory investigation, hemoglobin, cell counts, and platelet count have no significant difference between the meningitis and non-meningitis group, and all patients were found to have raised aspartate aminotransferase and alanine transaminase levels. CSF analysis was done in 17 patients of scrub typhus with clinical suspicion of meningitis. CSF analysis finding along with other neurological features and patients’ outcome of all patients is shown in Table 2.

The mean CSF protein, glucose, and cell count were 65.75±9.27 mg/dL, 45.00±7.23 mg/dL, and 65.94±52.72 cells/mm³ of CSF, respectively, with
lymphocyte count of more than 96% in all cases. Most patients had lymphocytic pleocytosis and the mean lymphocyte percentage was 96.2±4.5%, as shown in Table 3. Out of all 47 patients, 45 (84.61%) patients recovered, and 2 (15.38%) patients expired. Both two patients who expired had multiple organ dysfunctions.

DISCUSSION

In India, scrub typhus has been reported in at least 16 states.\(^1\) Meningitis in childhood scrub typhus has not been extensively studied; most reports of meningitis are from Korea, India, and Taiwan. In most of the literature, meningitis was reported in 5–64% of children with scrub typhus.\(^13\) In our study, meningitis complicated 36% of children with scrub typhus. A prospective study of Thai children revealed that scrub typhus was the second most common cause of aseptic meningitis next to Japanese encephalitis. Fever was documented in all cases of scrub typhus similar to observations by Digra et al.\(^,\) and Bhat et al. An eschar at the site of chigger bite can be seen in the early disease and is a useful diagnostic clue in scrub typhus, though its frequency varies from 7% to 97%.

Eschars are painless ulcers up to 1 cm in size, with a black necrotic center (resembling the mark of a cigarette burn). Usually, a single eschar is found on the neck, axillae, chest, abdomen, and groin, but multiple eschars have also been documented. In our study, only 10 (21.2%) children had eschar/rash at the time of admission. Hepatomegaly and splenomegaly were observed in 18 (38.3%) and 16 (34%), respectively, with significant difference among both the groups (P<0.01). The presence of splenomegaly is an important sign to distinguish scrub typhus from dengue fever as splenomegaly is uncommon in the latter.

Neck rigidity was noted in 10 (58.8%) patients of scrub typhus meningitis, similar to other studies showing the presence of neck rigidity in 45.45–49% of meningitis cases.\(^15\) In our study, altered sensorium was noted in...
Most patients with scrub typhus meningitis had lymphocytic pleocytosis and mean lymphocyte percentage was 96.2±4.5% with normal protein 65.75 mg/dL±9.27 and 45.00 mg/dL±7.23 glucose levels similar to one study contrast to other studies, where protein level was higher than normal.

Azithromycin is a preferred drug in children <8 years, while doxycycline is considered in older children. Doxycycline is bacteriostatic to O. tsutsugamushi and does not cross the blood–brain barrier (BBB) beyond 15–30%. Chloramphenicol being a bactericidal drug with better BBB penetration is preferred in cases complicated with meningitis. Rickettsial strains with reduced susceptibility to doxycycline have been reported, and alternative drugs can be used in such situations. The response to doxycycline is dramatic and fever persisting beyond 48 h of initiation of doxycycline should prompt consideration of alternative or additional diagnosis, including coinfection.

Limitations of the study
Relatively small sample size restricts the generalization of study, larger multi-centric studies are required for further implication of study.

CONCLUSION
Any child with acute febrile illness lasting for more than 5 days should be evaluated for scrub typhus for prompt treatment. In case of meningitis, scrub typhus should be kept in mind and empirical treatment should be started promptly for the early recovery. Early treatment with doxycycline or azithromycin should be considered in suspected cases, as delay in treatment may lead to life-threatening complications.

ACKNOWLEDGMENT
None.

REFERENCES

Authors' Contributions:
RS- Concept and design, clinical protocol, critical review of the manuscript; BB and N- Data collection, tabulation and interpretation; SM- Manuscript writing and drafting.

Work attributed to:
SGRR Institute of Medical Sciences, Dehradun, Uttarakhand, India.

Orcid ID:
Bharti Bhandari - © https://orcid.org/0000-0002-7563-7167
Nitesh - © https://orcid.org/0000-0001-9721-0431
Dr. Sunil Malik - © https://orcid.org/0000-0002-4906-6049

Source of Support: Nil, Conflict of Interest: None declared.