Use of optical coherence tomography retinal thickness deviation map for hydroxychloroquine retinopathy screening

Jitendra Kumar1, Surabhi Gupta2, Rashmi Kumari3

1Professor and Head, 2Assistant Professor, 3Junior Resident, Department of Ophthalmology, Maharani Laxmi Bai Medical College, Jhansi, Uttar Pradesh, India

ABSTRACT

Background: Hydroxychloroquine (HCQ) is widely used to treat several rheumatic and skin diseases and can cause damage to the outer retina, known as HCQ retinopathy, and is common among long-term users of the drug with higher daily dose by weight. The goal of screening for retinopathy is to recognize signs of toxicity at an early enough stage to prevent the loss of visual acuity. Aims and Objectives: This study aimed to evaluate the diagnostic performance of a commercially available retinal thickness deviation map obtained by spectral-domain (SD) optical coherence tomography (OCT) for screening of HCQ retinopathy. Materials and Methods: This study was a prospective comparative study between unaffected (patients who did not develop retina toxicity) and affected (who developed toxicity) of 50 patients of the age group of 14–60 years taking HCQ medication for several dermatological and rheumatologic disorders. The patients who fulfilled the inclusion criteria were screened for HCQ retinal toxicity using SD-OCT, standard automated perimetry, fundus autofluorescence, and comprehensive ophthalmic examinations. Results: In this study, in group 2 patients, 60% were having parafoveal, 30% having perifoveal, and 10% having a mixed pattern (P < 0.001) of HCQ retinopathy, and the mean deviation and pattern standard deviation increase as the severity of disease increases (P < 0.005). Conclusion: This study concluded that HCQ is a safer drug and can be used safely in these patients with proper HCQ retinal toxicity monitoring with an SD-OCT-generated retinal thickness deviation map and with regular follow-up to monitor reduced thickness in the parafoveal region. Key words: Hydroxychloroquine; Retinal toxicity; Spectral-domain optical coherence tomography

INTRODUCTION

Hydroxychloroquine (HCQ) is widely used to treat several rheumatic and dermatologic diseases.1

HCQ can cause damage to the outer retina which is irreversible, known as HCQ retinopathy. The goal of screening for retinopathy is to recognize signs of toxicity at an early enough stage to prevent the loss of visual acuity.2

The new study showed that patients taking HCQ using 4.0–5.0 mg/kg real weight had a markedly lower cumulative risk of toxicity than those using higher levels.3

The apparent safety of HCQ needs vision screening every 6 months in patients who were taking the drug. In HCQ-treated patients whose renal function is normal, routine ophthalmic screening is not indicated if the daily dosage is <6.5 mg/kg. In patients whose daily dose is >6.5 mg/kg or who have taken HCQ continuously for >10 years, annual screening may be appropriate.4

Etiopathogenesis

HCQ retinopathy causes the destruction of macular rods and cones with the sparing of the foveal cones. This pattern provides the typical bull’s-eye appearance [Figure 2]. HCQ binds to melanin, accumulates in the RPE, and remains

Address for Correspondence:
Dr. Rashmi Kumari, Junior Resident, Department of Ophthalmology, Maharani Laxmi Bai Medical College, Jhansi, Uttar Pradesh, India.
Mobile: +91-8299591821. E-mail: meenurashmi18@gmail.com
there for a long period. It is directly toxic to the RPE, causing cellular damage and atrophy.5,6

Sign and symptoms of HCQS retinopathy

On examination, a telltale sign of HCQS toxicity is a bilateral change in the retinal pigment epithelium of the macula that gives the commonly described appearance of a bull’s-eye maculopathy.6 Spectral-domain (SD) optical coherence tomography (OCT) is designated as a key screening test because it is non-invasive and widely available in ophthalmology clinics to support the identification of retinal structural changes.7 Latasiewicz et al., studied the role of OCT, autofluorescence, and Humphrey 10–2 visual fields in the early detection of retinal thinning.8

Kim et al., studied that the area of abnormal pixels on the retinal thickness deviation on the OCT map correlated significantly with the mean deviation (MD) (P<0.001) and pattern standard deviation (PSD) (P<0.0001) on the Humphrey 30–2 test in eyes with HCQS retinopathy.9

Aims and objectives

This study aimed to evaluate the diagnostic performance of a commercially available retinal thickness deviation map obtained by SD-OCT for screening of HCQS retinopathy.

MATERIALS AND METHODS

This study was a prospective comparative study between unaffected (12 patients who did not develop retinal toxicity) in group 1 and affected (33 patients who developed retinal toxicity) in group 2. Patients of the age group of 14–60 years taking HCQS medication for several dermatological disorders (e.g., systemic lupus erythematosus) and for rheumatologic disorders (e.g., rheumatoid arthritis), who were reported to Ophthalmology, Orthopedics, Medicine, Dermatology, and Venereal disease departments of Maharani Laxmi Bai Medical College, Jhansi, from April 2021 to June 2022 (15-month duration), were included in the study. The study was pre-approved by the Institutional Ethics Committee (IEC) for final permission with Certificate No. 39/IEC/1/2022-2023. After obtaining the permission of the IEC, the study was conducted. Out of 50 patients, 5 were dropped out, and a total of 45 patients were included in the study.

Patients were selected based on the following inclusion criteria

- Age group of 14–60 years
- Current or previous history of HCQS treatment
- Patients on HCQS medication with deranged renal function tests
- Patients with diabetes mellitus and hypertension taking HCQS with normal vision and fundus on clinical examination
- Patients who have given their informed written consent.

Exclusion criteria

- Age group <14 or more than 60 years of age
- Patients with retinal vascular disease
- Patients with glaucomatous and non-glaucomatous RNFL defects
- Patients with other retinal/optic nerve diseases.

The patients who fulfilled the inclusion criteria were screened for HCQS retinal toxicity using SD-OCT, standard automated perimetry Humphrey field analyzer (HFA), fundus autofluorescence (FAF), and comprehensive ophthalmic examinations (Table 1). All patients who were included in this study underwent a comprehensive ophthalmic examination (visual acuity testing, best-corrected visual acuity, color vision, intraocular pressure, anterior segment evaluation for keratopathy, Amsler grid testing, and fundus examination), SD-OCT, HFA 10–2, and or 30–2. In this study, out of 45 patients, 12 who were unaffected (who did not develop toxicity) were kept in Group 1 and the remaining 33 patients who were affected were kept in Group 2.

Along with ophthalmic examination, various blood investigations such as blood glucose level, serum creatinine, rheumatoid arthritis (RA) factor for RA, and antinuclear antibody for autoimmune disorders like SLE were carried out. Furthermore, data from the evaluation of patients based on the disease severity score (DAS) and EULAR Criteria for RA and SLE were obtained, and patients were categorized into affected (i.e., with toxicity) and unaffected groups. We followed up each patient at a 4-month interval. At follow-up visits with baseline ophthalmic examination, SD-OCT and standard automated perimetry have also been performed using the 30–2 or 10–2 strategy, or both (Carl Zeiss Meditec, Inc) with FAF.

Diagnosis of HCQS retinopathy

The eyes with HCQS retinopathy have been classified based on the pattern and severity of retinopathy. They have been classified into parafoveal (photoreceptor RPE disruption in the area from the fovea) and pericentral (photoreceptor RPE disruption outside the parafovea) patterns, and those with both of these patterns were considered to have a mixed pattern. Based on the severity of HCQS retinopathy, the eyes have been classified into early retinopathy (patchy photoreceptor defects only), moderate retinopathy (photoreceptor defects in a partial [>180] or full ring around the fovea), and severe retinopathy (combined RPE involvement).10
Statistical analysis
All statistical analyses have been performed using SPSS version 21.0 (SPSS Inc). Means for continuous variables have been then compared using independent-group t-test, and data were compared using the χ^2 and Fisher’s exact tests as appropriate. $P<0.05$ was used to reject the null hypothesis (statistically significant).

RESULTS
In this study, out of 45 patients, 70% of patients who were unaffected were kept in Group 1, and 30% of patients who were affected were kept in Group 2. In this study, we found that 42% of patients of Group 1 and 50% of patients of Group 2 were in the 5th decade of life ($P<0.01$). In group 1, the male-to-female ratio was 1:1, and in group 2, the male-to-female ratio was 1:2 ($P<0.03$). Maximum patients in both groups were of low socioeconomic status. In group 1, all patients were having fasting blood sugar (FBS) <100 mg/dL with normal blood serum creatinine level; while in group 2, all patients were having FBS more than 110 mg/dL and creatinine level above 1.3 mg/dL ($P<0.05$).

In this study, we also found that in group 2 patients, 60% and 50% of patients were positive for RA factor and ANA, respectively, with moderate DAS score and EULAR criteria more than 6 ($P<0.05$); while in group 1 patients, RA factor and ANA were positive in 30% and 20% of patients with low DAS score and EULAR criteria <6. In this study, in Group 1 patients, all 9 quadrants of the retinal thickness deviation map were green with an average thickness of $259\pm18\,\mu m$ and central thickness of $272\pm24\,\mu m$, and in Group 2 patients, 60% of patients showing retinal thinning in the parafoveal area with average thickness $222\pm20\,\mu m$ and central thickness $246\pm24\,\mu m$ ($P<0.01$) (Table 2).

In this study, in Group 2 patients, 40% were in early, 50% of patients were in moderate, and 10% of patients were in severe retinopathy, and patients with severe retinopathy developed bull’s-eye maculopathy on FAF (Table 3 and Figure 1).

In this study, in Group 2 patients, 60% were having parafoveal, 30% having perifoveal, and 10% having a mixed pattern ($P<0.001$) of HCQS retinopathy (Table 4).

<table>
<thead>
<tr>
<th>Parameters of ocular examination</th>
<th>Group 1 (who did not develop toxicity)</th>
<th>Group 2 (who developed toxicity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual acuity of both eyes</td>
<td>6/6</td>
<td>6/12–6/9</td>
</tr>
<tr>
<td>Visual acuity with pinhole in both eyes</td>
<td>6/6</td>
<td>6/6–6/6</td>
</tr>
<tr>
<td>BCVA</td>
<td>6/6</td>
<td>6/6–6/6</td>
</tr>
<tr>
<td>Near vision</td>
<td>N/6</td>
<td>N/6</td>
</tr>
<tr>
<td>Color vision</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Anterior segment</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Keratopathy</td>
<td>Not present</td>
<td>Not present</td>
</tr>
<tr>
<td>Amsler grid testing</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Schirmer’s test</td>
<td>10 s</td>
<td>10 s</td>
</tr>
<tr>
<td>Intraocular pressure</td>
<td>14 mmHg</td>
<td>14 mmHg</td>
</tr>
<tr>
<td>Fundus examination</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Media</td>
<td>Clear</td>
<td>Clear</td>
</tr>
<tr>
<td>Optic disc appearance</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Cup: Disc ratio</td>
<td>0.3–0.4</td>
<td>0.3–0.4</td>
</tr>
<tr>
<td>Macula</td>
<td>Foveal reflex present</td>
<td>Foveolar reflex dull</td>
</tr>
<tr>
<td>Perimetry HFA 10–2</td>
<td>Normal</td>
<td>Central/paracentral scotoma present</td>
</tr>
<tr>
<td>SD-OCT</td>
<td>HCQS retinopathy not present</td>
<td>HCQS retinopathy present</td>
</tr>
<tr>
<td>Bull’s-eye maculopathy</td>
<td>Not present</td>
<td>Present</td>
</tr>
</tbody>
</table>

HCQS: Hydroxychloroquine, SD-OCT: Spectral-domain optical coherence tomography, BCVA: Best-corrected visual acuity

<table>
<thead>
<tr>
<th>Quadrants</th>
<th>Group 1 thickness of macula (micron meter) in BE mean±SD</th>
<th>Group 2 thickness of macula (micron meter) in BE mean±SD</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Perifoveal</td>
<td>Parafoveal</td>
<td>Perifoveal</td>
</tr>
<tr>
<td>Superior</td>
<td>276±16</td>
<td>294±24</td>
<td>234±15</td>
</tr>
<tr>
<td>Inferior</td>
<td>259±18</td>
<td>268±26</td>
<td>226±17</td>
</tr>
<tr>
<td>Nasal</td>
<td>275±14</td>
<td>291±23</td>
<td>236±14</td>
</tr>
<tr>
<td>Temporal</td>
<td>235±15</td>
<td>278±25</td>
<td>200±16</td>
</tr>
</tbody>
</table>

SD: Spectral domain, OCT: Optical coherence tomography
In our study, MD and PSD increase as the severity of the disease increases (P<0.005) (Table 5).

DISCUSSION

In our study, the incidence of HCQS retinopathy was higher (P<0.01) in between 50 and 60 years of age group, similar to De Sisternes et al., who found that the mean age of HCQS retinopathy was 56 years (P>0.9). Uslu et al., studied that HCQS retinopathy was higher in the 40–45 years of age group (P=0.5). In our study, the male-to-female ratio was 1:2 in group 2 (P<0.03), similar to Melles et al., who found that the retinal toxicity was higher in females (P=0.08); whereas Abdelbaky et al., observed no relationship between HCQS retinopathy and gender (P=0.003). In our study of HCQS, retinopathy was slightly higher (P<0.01) in low socioeconomic status group patients, similar to Pinto et al., whereas Yusuf et al., found that higher dose, long duration, and renal impairment as risk factors. In our study, there is a significant relation between diabetes mellitus, renal impairment, RA factor, and ANA and HCQS retinopathy (P<0.05), similar to Anderson et al. Tangtavoran et al., observed no direct relation between RA factor, ANA, and renal disease with HCQS retinopathy (P<0.05). In our study, we found higher DAS scores and EULAR criteria as risk factors for HCQS retinopathy (P<0.05). Do et al., found no direct relationship between DAS and HCQS retinopathy. In our study, a significant moderate retinal thinning was observed in the parafoveal region (P<0.01) similar to Lally et al., studied the significant thinning in the parafoveal region (P=0.002). Kim et al., found retinal thinning in the pericentral region (P=0.05).

In our study, thinning on the retinal thickness deviation map correlated significantly with the MD and PSD on HFA 30–2 and 10–2 (P<0.005). Lee studied that HFA 10–2 fields were not revealing (normal results), while HFA 30–2 reveals only central scotoma in moderate-to-severe HCQS retinopathy patients (P=0.03).

Limitations of the study
This screening method mainly depends on patient’s history of taking hecs which is a subjective assessment.
Table 5: Pattern standard deviation and mean deviation on HFA 30–2 and 10–2 examination according to the severity of the HCQS retinopathy

<table>
<thead>
<tr>
<th>HCQS retinopathy</th>
<th>HFA 30–2</th>
<th>HFA 10–2</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MD</td>
<td>PSD</td>
<td>MD</td>
</tr>
<tr>
<td>Early</td>
<td>−1.52 dB</td>
<td>1.81 dB</td>
<td>−2.66 dB</td>
</tr>
<tr>
<td>Moderate</td>
<td>−1.96 dB</td>
<td>1.76 dB</td>
<td>−2.87 dB</td>
</tr>
<tr>
<td>Severe</td>
<td>−2.07 dB</td>
<td>2.22 dB</td>
<td>−3.89 dB</td>
</tr>
</tbody>
</table>

PSD: Pattern standard deviation, MD: Mean deviation, HCQS: Hydroxychloroquine

CONCLUSION

This study concluded that HCQS is a safer drug and can be used safely in these patients with proper HCQS retinal toxicity monitoring with an SD-OCT-generated retinal thickness deviation map and with regular follow-up to monitor reduced thickness in the parafoveal region.

ACKNOWLEDGMENT

We would like to acknowledge all participants and all staff of our department who assisted in the study.

REFERENCES

Author's Contributions:
JK- Concept and design of the study, prepared the first draft of the manuscript. SG- Concept, coordination, statistical analysis and interpretation, and revision of the manuscript. RK- Interpreted the result, reviewed the literature and manuscript preparation.

Work Attributed to:
Maharani Laxmi Bai Medical College, Jhansi- 284128, Uttar Pradesh, India.

Orcid ID:
Jitendra Kumar- https://orcid.org/0009-0009-3232-381X
Surabhi Gupta- https://orcid.org/0009-0006-0105-9444
Rashmi Kumari- https://orcid.org/0000-0001-9030-4099

Source of Support: Nil, Conflicts of Interest: None declared.