Assessing the impact of body mass index on insulin resistance and metabolic risk factors in pre-diabetic individuals: A comprehensive cross-sectional study

Satyanarayana Raju P¹, Pyda Vijaya Radhika², Ch. BS Srinivas³, Ritu Vaish⁴, Usha Rani P⁵

¹Associate Professor, ²Assistant Professor, Department of Physiology, ³Assistant Professor, Department of Biochemistry, ⁴Assistant Professor, Department of Anesthesiology, Andhra Medical College, Visakhapatnam, Andhra Pradesh, ⁵Professor, Department of Microbiology, Arundathi Institute of Medical Sciences and Hospital, Hyderabad, Telangana, India

Background: Insulin resistance plays a crucial role in the onset of type 2 diabetes, with body mass index (BMI) being a significant determinant. Aims and Objectives: This study examines the link between BMI and insulin resistance in pre-diabetic individuals to inform strategies for early diabetes intervention. Materials and Methods: This cross-sectional study involved 100 pre-diabetic participants. Data on demographic characteristics, BMI, insulin resistance (measured by the Homeostatic Model Assessment for Insulin Resistance, HOMA-IR), lipid profiles, and blood pressure (BP) were collected. Participants were categorized into normal weight, overweight, and obese groups to explore the relationship between BMI and insulin resistance and its impact on metabolic and cardiovascular health. Results: The average participant age was 45.8 years (SD = 12.3), with a slightly majority being female (52%) and an average BMI of 28.4 kg/m² (SD = 4.5). A significant positive correlation (r = 0.64, P < 0.001) between BMI and the HOMA-IR index highlighted the association between increased BMI and insulin resistance. Obese individuals had a notably higher HOMA-IR index (3.5 ± 1.3) compared to those overweight (2.5 ± 1.0) and of normal weight (1.9 ± 0.8). In addition, the study found worsening lipid profiles and increased BP with higher BMI categories. Gender did not significantly affect insulin resistance, whereas a slight increase in HOMA-IR with age was noted (r = 0.23, P = 0.02). Conclusion: The findings highlight the strong correlation between higher BMI and increased insulin resistance in pre-diabetics. They emphasize the importance of managing body weight to mitigate the risk of diabetes and cardiovascular diseases.

Key words: Insulin resistance; Body mass index; Pre-diabetes; Diabetes prevention; Early intervention

INTRODUCTION

The escalating prevalence of type 2 diabetes globally presents a significant public health challenge, with insulin resistance serving as a cornerstone in its pathophysiology. Insulin resistance, a condition characterized by the diminished effectiveness of insulin in lowering blood glucose levels, often precedes the onset of type 2 diabetes. Pre-diabetes, a state of impaired glucose tolerance not yet reaching the threshold for diabetes, offers a critical window for intervention to prevent the progression to full-blown diabetes.

Body mass index (BMI), a widely used measure of body fat based on an individual’s weight in relation to their height, has been identified as a significant predictor of
insulin resistance. The relationship between elevated BMI and increased risk of developing insulin resistance is well documented, highlighting the importance of weight management in diabetes prevention strategies. However, the specific correlation between BMI and insulin resistance in pre-diabetic individuals remains an area of active research, underscoring the need for studies that can inform targeted interventions.

Aims and objectives
The aim of the study is to explore the association between BMI and insulin resistance in individuals with pre-diabetes, with the goal of identifying how excess body weight contributes to the pathogenesis of type 2 diabetes. The objectives are as follows:

To categorize pre-diabetic individuals based on BMI and analyze the correlation between BMI categories (normal weight, overweight, and obese) and insulin resistance, as measured by the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) index.

To assess the impact of BMI on metabolic and cardiovascular risk factors, including lipid profiles (total cholesterol, low-density lipoprotein [LDL], high-density lipoprotein [HDL]), triglycerides, fasting glucose, HbA1c levels, blood pressure (BP), C-reactive protein (CRP), fasting insulin, leptin, and adiponectin levels, to understand how body weight influences these parameters in the pre-diabetic phase.

To evaluate the gender-specific responses and the influence of age on insulin resistance, utilizing HOMA-IR scores to discern any significant differences or trends that could inform personalized intervention strategies.

MATERIALS AND METHODS

Study design and setting
This investigation was designed as a cross-sectional observational study and was conducted at King George Hospital, affiliated with Andhra Medical College, Visakhapatnam.

Study period
The study spanned from January 2023 to December 2023, encompassing both data collection and analysis phases within this timeframe.

Participants
The study cohort consisted of 100 individuals identified as pre-diabetic based on fasting glucose levels and/or HbA1c criteria according to the American Diabetes Association guidelines.

Inclusion criteria
Adults aged 18 years and above.

Confirmed pre-diabetes diagnosis based on fasting glucose levels and/or HbA1c criteria according to the American Diabetes Association guidelines.

Exclusion criteria
- Individuals who have been previously diagnosed with diabetes
- Pregnant women
- Individuals diagnosed with significant metabolic or endocrine disorders other than pre-diabetes.

Data collection
Participants underwent a comprehensive baseline evaluation that included demographic information (age, gender), body measurements (weight, height), and the calculation of BMI. BMI was categorized according to the World Health Organization’s classifications: normal weight (BMI <25 kg/m²), overweight (BMI 25–29.9 kg/m²), and obese (BMI ≥30 kg/m²).

Laboratory measurements
Fasting blood samples were collected to evaluate insulin resistance using the HOMA-IR, as well as to assess comprehensive lipid profiles (total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides), fasting blood glucose, and HbA1c levels. Laboratory analyses were conducted utilizing the AU480 Beckman Coulter autoanalyzer for high precision and reliability in measuring glucose, HbA1c, and lipid profiles within a clinical biochemistry laboratory setting.

Additional parameters, including CRP, fasting insulin, leptin, and adiponectin levels, were also measured to provide a more comprehensive assessment of metabolic health.

Statistical analysis
Descriptive statistics were utilized to summarize the demographic and clinical characteristics of the participants. The relationship between BMI and HOMA-IR was examined using Pearson’s correlation coefficient. ANOVA was conducted to compare mean HOMA-IR values across different BMI categories, followed by post-hoc analyses to identify specific group differences. P<0.05 was considered statistically significant for all tests.

Ethical considerations
The study protocol was approved by the Institutional Ethics Committee, Andhra Medical College, Visakhapatnam. Informed consent was obtained from all participants before their inclusion in the study, ensuring confidentiality and
Raju, et al.: Assessing the impact of body mass index on insulin resistance and metabolic risk factors in pre-diabetic individuals

RESULTS

In this cross-sectional observational study, we assessed the demographic and general characteristics of 100 participants, delineating the correlation between BMI and insulin resistance among pre-diabetic individuals. The cohort comprised an almost equal distribution of genders, with 52% females, and exhibited a mean age of 45.8 years (SD=12.3 years) and a mean BMI of 28.4 kg/m² (SD=4.5 kg/m²) (Table 1, Figure 1).

BMI categories and insulin resistance

Analysis of BMI categories (Table 2) indicated a progressive increase in the HOMA-IR index correlating with BMI status. Specifically, individuals classified as normal weight (n=25) had a mean HOMA-IR index of 1.9 (SD=0.8), those overweight (n=45) reported a mean HOMA-IR of 2.5 (SD=1.0), and obese participants (n=30) presented with a mean HOMA-IR of 3.5 (SD=1.3), highlighting a significant upward trend in insulin resistance with increasing BMI (Figure 2).

Comprehensive metabolic and cardiovascular risk profile

Our evaluation extended to a comprehensive metabolic and cardiovascular risk profile across BMI categories (Table 3). Key findings included:

A marked increase in total cholesterol, LDL (“bad” cholesterol), and triglycerides with higher BMI categories, whereas HDL (“good” cholesterol) demonstrated an inverse relationship. Notably, obese individuals exhibited significantly higher total cholesterol (220±40 mg/dL), LDL (150±35 mg/dL), and triglycerides (180±60 mg/dL), coupled with lower HDL (45±7 mg/dL) levels.

Elevated fasting glucose and HbA1c percentages were observed alongside increasing BMI, with obese participants showing fasting glucose levels at 110±15 mg/dL and HbA1c at 6.0±0.5%.

Table 1: Demographic and general characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total participants</td>
<td>100</td>
</tr>
<tr>
<td>Mean age (years)</td>
<td>45.8±12.3</td>
</tr>
<tr>
<td>% Female</td>
<td>52%</td>
</tr>
<tr>
<td>Mean BMI (kg/m²)</td>
<td>28.4±4.5</td>
</tr>
</tbody>
</table>

BMI: Body mass index

Table 2: BMI categories and HOMA-IR index

<table>
<thead>
<tr>
<th>BMI category</th>
<th>n</th>
<th>% of Total</th>
<th>Mean HOMA-IR Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal weight</td>
<td>25</td>
<td>25</td>
<td>1.9±0.8</td>
</tr>
<tr>
<td>Overweight</td>
<td>45</td>
<td>45</td>
<td>2.5±1.0</td>
</tr>
<tr>
<td>Obese</td>
<td>30</td>
<td>30</td>
<td>3.5±1.3</td>
</tr>
</tbody>
</table>

BMI: Body mass index, HOMA-IR: Homeostatic model assessment for insulin resistance

Table 3: Comprehensive metabolic and cardiovascular risk profile by BMI category

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normal</th>
<th>Overweight</th>
<th>Obese</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cholesterol (mg/dL)</td>
<td>185±30</td>
<td>200±35</td>
<td>220±40</td>
</tr>
<tr>
<td>LDL (mg/dL)</td>
<td>110±25</td>
<td>130±30</td>
<td>150±35</td>
</tr>
<tr>
<td>HDL (mg/dL)</td>
<td>55±10</td>
<td>50±8</td>
<td>45±7</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>130±45</td>
<td>150±50</td>
<td>180±60</td>
</tr>
<tr>
<td>Fasting glucose (mg/dL)</td>
<td>90±10</td>
<td>100±12</td>
<td>110±15</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>5.5±0.5</td>
<td>5.7±0.5</td>
<td>6.0±0.5</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>120±7</td>
<td>125±8</td>
<td>130±10</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>85±5</td>
<td>88±6</td>
<td>92±7</td>
</tr>
<tr>
<td>Insulin resistance (HOMA-IR)</td>
<td>1.5±0.5</td>
<td>2.0±0.7</td>
<td>2.5±1.0</td>
</tr>
<tr>
<td>C-reactive protein (mg/L)</td>
<td>2±1</td>
<td>3±1.5</td>
<td>4±2</td>
</tr>
<tr>
<td>Fasting insulin (µU/mL)</td>
<td>8±2</td>
<td>10±3</td>
<td>12±4</td>
</tr>
<tr>
<td>Leptin (ng/mL)</td>
<td>6±1</td>
<td>8±2</td>
<td>10±3</td>
</tr>
<tr>
<td>Adiponectin (µg/mL)</td>
<td>10±2</td>
<td>8±2</td>
<td>6±1.5</td>
</tr>
</tbody>
</table>

BMI: Body mass index, LDL: Low-density lipoprotein, HDL: High-density lipoprotein, HOMA-IR: Homeostatic model assessment for insulin resistance, BP: Blood pressure
Systolic and diastolic BPs were significantly higher in the obese group, indicating the cardiovascular risks associated with a higher BMI.

Additional markers such as insulin resistance (HOMA-IR), CRP, fasting insulin, leptin, and adiponectin levels varied significantly across BMI categories, underscoring the multifactorial risk profile associated with obesity.

Gender and age analysis
Gender-specific analysis (Table 4) revealed that the mean HOMA-IR for males was 2.8±1.3, slightly higher than for females at 2.6±1.1. Moreover, a statistically significant correlation was found between age and HOMA-IR (r=0.23, P=0.02), suggesting that insulin resistance modestly increases with age among pre-diabetic individuals.

DISCUSSION

The findings of our cross-sectional observational study conducted at King George Hospital, affiliated with Andhra Medical College, Visakhapatnam, contribute valuable insights into the relationship between BMI and insulin resistance among pre-diabetic individuals. Our results, drawn from a cohort of 100 pre-diabetic participants, underscore a significant positive correlation between BMI and the HOMA-IR index, supporting the notion that elevated BMI is a crucial factor in driving increased insulin resistance. The observed correlation coefficient (r=0.64, P<0.001) between BMI and HOMA-IR indexes not only indicates a robust association but also emphasizes the pivotal role of obesity management in halting the progression of insulin resistance. This correlation is particularly noteworthy in the context of pre-diabetes, a stage that presents a strategic opportunity for intervention to prevent the transition to type 2 diabetes. The gradient in mean HOMA-IR values across BMI categories, spanning from normal weight to obese, further underscores the linear relationship between adiposity and insulin resistance.

Our study findings are consistent with existing literature, which suggests that adipose tissue, especially visceral fat, contributes to systemic inflammation and the release of adipokines, exacerbating insulin resistance. The significant disparities in HOMA-IR values among BMI categories, supported by ANOVA and post hoc analyses, underscore the significance of weight management in ameliorating insulin resistance.

In addition, the findings related to lipid profiles and BP elaborate on the multifaceted impact of obesity, demonstrating how increased BMI correlates with unfavorable lipid profiles and elevated BP, thereby compounding the risk of cardiovascular diseases in pre-diabetic populations.

Remarkably, our study found no substantial gender disparity in HOMA-IR values, indicating that the association between BMI and insulin resistance is consistent across genders in pre-diabetic individuals. However, the weak correlation between age and HOMA-IR suggests a modest increase in insulin resistance with aging, suggesting that while age plays a role, it is not as significant as BMI in influencing insulin resistance.

Limitations of the study

It is important to acknowledge the limitations of our study, including its cross-sectional design, which precludes the establishment of causality between BMI and insulin resistance. In addition, the sample size of 100 pre-diabetic individuals, while informative, may not fully represent the broader pre-diabetic population, potentially limiting the generalizability of the findings. Furthermore, relying on HOMA-IR as a surrogate marker for insulin resistance, while widely accepted, may not capture the complete complexity of the insulin resistance syndrome.

CONCLUSION

Our study highlights the urgent need for targeted interventions focusing on weight reduction and lifestyle modifications in pre-diabetic individuals. By addressing obesity as a modifiable risk factor, it is possible to significantly mitigate insulin resistance, thereby delaying or preventing the onset of type 2 diabetes.

ACKNOWLEDGMENTS

The authors are thankful to the staff of the department of physiology for their continuous support during the study period.

REFERENCES

Authors Contribution:

SRP- Concept and design of the study, results interpretation, review of literature, and preparing first draft of manuscript. Statistical analysis and interpretation, revision of manuscript. PVR- Concept and design of the study, results interpretation, review of literature and preparing first draft of manuscript, revision of manuscript. CBSS- Review of literature and preparing first draft of manuscript. Statistical analysis and interpretation. RV- Concept and design of the study, results interpretation, review of literature and preparing first draft of manuscript. Statistical analysis and interpretation, revision of manuscript. URP- Review of literature and preparing first draft of manuscript, revision of manuscript.

Work attributed to:
Andhra Medical College, Visakhapatnam, Andhra Pradesh, India.

Orcid ID:
Satyanarayana Raju P - https://orcid.org/0009-0000-4035-1452
Pyda Vijaya Radhika - https://orcid.org/0009-0006-7332-7890
Ch. BS Srinivas - https://orcid.org/0009-0003-2410-1818
Ritu Vaish - https://orcid.org/0009-0000-3643-8782
Usha Rani P - https://orcid.org/0009-0003-1043-9121

Source of Support: Nil, Conflicts of Interest: None declared.