Sprengel’s deformity and unilateral absent kidney: A case report

Amit Sarkar¹, Amitabha Bandyopadhyay², Shovan Kumar Das³, Koushik Mondal⁴, Sanjai Kumar Singh⁵

¹Residential Medical Officer Cum Clinical Tutor, ²Associate Professor, ³Postgraduate Trainee, ⁴Postgraduate Trainee, Burdwan Medical College, Burdwan, West Bengal, India, ⁵Medical Officer (Physician), Sub-Divisional Hospital, Ghatal, West Midnapore, West Bengal, India

ABSTRACT

The Sprengel’s deformity is a congenital condition where the scapula on one or both sides are underdeveloped or abnormally high in position. An interesting rare case of Sprengel’s deformity and unilateral absent kidney is being reported. The Sprengel’s deformity should not be left undiagnosed.

Key words: Sprengel’s deformity, Unilateral absent kidney

INTRODUCTION

The Sprengel's deformity is a rare, but most common congenital anomaly of the shoulder.¹ The deformity is due to failure of descent of the scapula in intrauterine life resulting in underdeveloped and high placed scapula. The Sprengel's deformity is associated with cosmetic deformity and decreased shoulder function.² Here, we report an interesting case of Sprengel's deformity with unilateral absent kidney.

CASE REPORT

A 30 years male attended outpatient department of our hospital with the chief complaints of left shoulder and chest pain intermittently and deformity of left shoulder since childhood. Family history was unremarkable for any congenital disorder.

On clinical examination, left shoulder was at higher level than right shoulder in standing position (Figure 1). His neck was apparently shorter than normal. There was restriction of active and passive rotation and lateral bending of neck. The active abduction of left shoulder was not possible beyond 90 degree angle. Examination of right shoulder was normal. On systemic examination, no abnormality was detected.

On investigation, routine complete blood count and blood biochemistry did not show any abnormality. X-ray of shoulder showed absent scapula on left side with presence of omovertebral bone (Figure 2). Ultrasonography and Computed Tomographic scan of abdomen showed absent left kidney (Figure 3). He was advised for conservative management with analgesic.

DISCUSSION

Eulenberg first described the deformity what later became known as Sprengel's deformity, as high-grade dislocation of the scapula in 1863.³ Then after two decades, Willet...
Sarkar, et al.: Sprengel’s deformity and unilateral absent kidney – A case report

Side of neck appear fuller. The passive movement of the shoulder joint may be normal. In 40% of patients with a Sprengel’s deformity, active abduction is limited to less than 100 degree angle, which was also seen in our patients. The periscapular muscles may be fibrotic and contracted. An omovertebral connection, which may be fibrous, cartilaginous or bony may exist in about one third of cases. This connection is between the superomedial angle of the scapula to the spinous process, lamina or transverse process of the cervical vertebrae. This connection was seen in present case. Similar to our patient, the left side is usually more commonly affected than the right side. Females are affected three times more than the males, but our patient was male. The Sprengel’s deformity may be associated with other syndromes like Klippel-Feil syndrome, Greig syndrome, Poland syndrome etc. Additionally, costovertebral defects (spina bifida and kyphoscoliosis); maldevelopment of pectoral girdle bones (clavicle, humerus) and musculature (pectoralis major, trapezius) may be present. Congenital malformations that may be present with Sprengel’s deformity are talipes equino-varus, pes valgus, hallux valgus, shortening of femur, congenital dislocation of the hip, defects of hand or finger, bifid ear, cleft palate, high arched palate, strabismus, underdeveloped or supernumerary mammary gland, dextrocardia, absent or floating kidney, congenital inguinal hernia, inencephaly. The left kidney was absent in our patient.

Based on the severity of the condition, different gradings of Sprengel’s deformity are as follows:

- **Grade 1**: The deformity is very mild. The deformity cannot be noticed with the clothes on.
- **Grade 2**: The deformity is mild. The superomedial portion of the high scapula is visible as a lump.
- **Grade 3**: The deformity is moderate. The affected shoulder is elevated 2-5 cm higher than the opposite shoulder.
- **Grade 4**: The deformity is severe. The superomedial angle is at the occiput, with neck webbing.

Rickets, osteomalacia, malunited scapular fracture, paralysis, cervical tuberculosis are considered in the differential diagnosis of Sprengel’s deformity.

Surgical intervention is required with significant cosmetic deformity and restriction of shoulder abduction in children between age of three to eight years. So, diagnosis should not be left until adulthood is reached. The surgical procedure involve a combination of a) scapular lowering with either shift of the origin or the insertion of the scapular muscles on the spine or scapula, b) resection of superomedial border and c) omovertebral bar resection.

Figure 2: X-ray of right shoulder region showing scapula at normal position (arrow pointing towards left). The scapula is missing from normal position on the left side and omovertebral connection is seen (arrow pointing upwards)

Figure 3: 3-D Computed Tomographic Scan showing absent kidney on left

The scapula is a cervical appendage that normally differentiates opposite mid cervical vertebral region at about 5 weeks of gestation. This structure normally descends to the thorax by the end of the third month of intrauterine life. The failure of this descent of the scapulae from C5—T1 position in the neck to T2—T7 position in posterior thorax during embryonic development results in Sprengel’s deformity. Similar to our patient, the undescended scapula is usually hypoplastic and is located higher than normal in the neck or upper thoracic region. Because of the upwardly rotated superomedial angle of the scapula, the ipsilateral side of neck appear fuller. The passive movement of the shoulder joint may be normal. In 40% of patients with a Sprengel’s deformity, active abduction is limited to less than 100 degree angle, which was also seen in our patients. The periscapular muscles may be fibrotic and contracted. An omovertebral connection, which may be fibrous, cartilaginous or bony may exist in about one third of cases. This connection is between the superomedial angle of the scapula to the spinous process, lamina or transverse process of the cervical vertebrae. This connection was seen in present case. Similar to our patient, the left side is usually more commonly affected than the right side. Females are affected three times more than the males, but our patient was male. The Sprengel’s deformity may be associated with other syndromes like Klippel-Feil syndrome, Greig syndrome, Poland syndrome etc. Additionally, costovertebral defects (spina bifida and kyphoscoliosis); maldevelopment of pectoral girdle bones (clavicle, humerus) and musculature (pectoralis major, trapezius) may be present. Congenital malformations that may be present with Sprengel’s deformity are talipes equino-varus, pes valgus, hallux valgus, shortening of femur, congenital dislocation of the hip, defects of hand or finger, bifid ear, cleft palate, high arched palate, strabismus, underdeveloped or supernumerary mammary gland, dextrocardia, absent or floating kidney, congenital inguinal hernia, inencephaly. The left kidney was absent in our patient.

Based on the severity of the condition, different gradings of Sprengel’s deformity are as follows:

- **Grade 1**: The deformity is very mild. The deformity cannot be noticed with the clothes on.
- **Grade 2**: The deformity is mild. The superomedial portion of the high scapula is visible as a lump.
- **Grade 3**: The deformity is moderate. The affected shoulder is elevated 2-5 cm higher than the opposite shoulder.
- **Grade 4**: The deformity is severe. The superomedial angle is at the occiput, with neck webbing.

Rickets, osteomalacia, malunited scapular fracture, paralysis, cervical tuberculosis are considered in the differential diagnosis of Sprengel’s deformity.

Surgical intervention is required with significant cosmetic deformity and restriction of shoulder abduction in children between age of three to eight years. So, diagnosis should not be left until adulthood is reached. The surgical procedure involve a combination of a) scapular lowering with either shift of the origin or the insertion of the scapular muscles on the spine or scapula, b) resection of superomedial border and c) omovertebral bar resection.
CONCLUSION

An association of Sprengel’s deformity with unilateral absent kidney is a rare congenital abnormality. It should not be left undiagnosed. We must diagnose this condition early in childhood and solve patient’s cosmetic and functional problem.

ACKNOWLEDGEMENTS

All authors are thankful to the concerned patient, for his written consent to publish this article.

REFERENCES