
Asian Journal of Medical Sciences | Jan-Feb 2016 | Vol 7 | Issue 1	 1

INTRODUCTION

Leprosy is a chronic infection acquired by being exposed 
to M. leprae, an acid fast bacillus. M.leprae is a slow growing 
organism with a longer incubation period. Initially it 
could not be cultured in vitro1,2 because of  its genetic 
composition which allows it to depend on the host energy 
metabolism for survival. Genetic studies reveal that it has 
less than 50 % coding capacity and a lot of  pseudogenes 
with the rest being responsible for its in vivo survival and 
pathogenesis in the host.3 The identification of  the nine 
banded armadillos and M.leprae being able to infect the 
species has enabled the identification of  the immune cells 
involved in the leprosy reactions with the development 
of  appropriate drug combinations to improve on the 
health outcome. Since the introduction of  the Multidrug 
Therapy (MDT) for leprosy, it’s prevalence in the endemic 
regions has been reduced to less than 1000 cases per 10,000 
population. Lepra reactions have been shown to occur 

before, during and after the MDT course for leprosy, 
worsening the nerve and skin lesions. Given that M. leprae 
has a predilection to the peripheral nerve Schwann cells, 
this leads to the severe nerve lesions, with consequent 
motor and sensory loss, muscle atrophy, and deformities, 
especially in Lepromatous leprosy cases. This occurs due 
to the exaggerated immune response to the Mycobacterium 
leprae. There is diverse immune responses towards M.leprae 
both the cell mediated and humoral mediated, with the cells 
involved being CD 4+ T cells and antibodies respectively. 
The antibody response leads to more severe nerve and skin 
lesions with systemic manifestations. The histopathology 
of  tissues appears multibacillary which makes these cases 
very contagious either through the skin contact or nasal 
secretions. This indicates the Th2 mediated immune 
reaction is not effective in combating M.leprae. Finding ways 
to shift the immune response from a Th2 to Th1 mediated 
will reduce the bacillary load in Lepromatous cases and 
prevent the systemic involvement of  leprosy. The Th17 
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response appears to enhance the type 1 reaction. It offers a 
potential target into either enhancing the immune response 
in case of  lepromatous pole or regulating the exaggerated 
response in some cases.

MYCOBACTERIUM LEPRAE

The components of  the M.leprae  includes: the 
lipoarabinomannan (a lipopolysaccharide-like component), 
the mycolyl-arabinogalactan-peptidoglycan complex, the 
protein-peptidoglycan complex, and muramyl dipeptide 
all of  which are potent inducers of  the inflammatory 
mediators, especially the TNF-α.4

Due to its lipid content on the cell wall, M.leprae can 
leave persistent antigens on the nerves and skin which will 
continuously stimulate the host immune reactions, even 
after the completion of  multiple drug therapy.5

GENETIC DETERMINANTS: SUSCEPTIBILITY TO 
LEPROSY

Ninety five percent of  the entire population is naturally 
immune to leprosy,6 which is due to the inherent natural 
immunity against the M.leprae. Various genes regulating 
both innate and adaptive immune response influence the 
disease outcome. The TLRs, NOD2 & MRC1 (mannone 
receptor type 1) are responsible for pattern recognition 
receptors and mycobacterial uptake, promoting autophagy, 
and the LTA4H regulates lipoxin A4 levels. The stimulation 
of  these pathways regulates the cellular metabolism upon 
infection, and activates cytokine production through 
the NF-ĸB and the vitamin D-  vitamin D receptor 
pathways. The PARK2 gene regulates the host cells 
apoptosis. The TNF, LTA & IFNG genes triggers and 
maintain the formation of  granulomas. The HLA gene in 
chromosome 6, IL-10 and the TNF/LTA axis, the IFNG/
IL-12 axis induces the differentiation of  naive CD 4 
lymphocytes. Single nucleotide polymorphism in these 
genes influences the immune response and subsequent 
susceptibility to M.leprae and its antigens.7-11

MODES OF TRANSMISSION

Leprosy is a communicable disease and can be transmitted 
from person to person via the respiratory droplets and skin 
contact with the infected people. M.leprae has been shown 
to be found in the nasal mucosa and skin, and this can be 
shed off  and acquired by close contacts.12-17 However the 
Tuberculoid pole of  leprosy is the least communicable of  
all the communicable diseases and the Lepromatous pole 
is the most contagious. Avoiding contact can lessen the 

chance of  acquisition especially hosts with lepromatous 
leprosy.

RIDLEY & JOPLING CLASSIFICATION OF 
LEPROSY

Mycobacterium leprae has been shown to be able to 
stimulate a wide range of  host innate and adaptive 
immunity, both cell-mediated and humoral mediated 
response, with the predominance of  the CD4+ lymphocytes 
and antibodies respectively.18

This has led to an immunological classification of  leprosy 
into five forms: tuberculoid polar leprosy (TT), borderline 
tuberculoid (BT), midborderline (BB), borderline 
lepromatous (BL), and lepromatous pole (LL)19-21 as shown 
in table below. Due to the difference in immune response at 
the two poles, biopsy samples shows the tuberculoid pole 
is paucibacillary and the lepromatous pole is multibacillary, 
fewer bacilli and more bacilli respectively. The skin lesions 
in the multibacillary form are less, usually localized and in 
the paucibacillary forms they are multiple and widespread. 
The leprosy reactions in the two poles occur regardless of  
viability of  M.leprae.22

MODIFIED RIDLEY & JOPLING’S CLASSIFICATION

TT Tuberculoid polar (high resistance)

BT Borderline tuberculoid

TI  Tuberculoid indefinite

BB Mid borderline

LI Lepromatous Indefinite

BL Borderline Lepromatous

LL Lepromatous polar (low resistance)

Direction with upgrading

Downgrading

IMMUNOLOGY: LEPRAE REACTIONS

The tuberculoid pole of  leprosy has a CD 4+ lymphocyte 
mediated, delayed type hypersensitivity.17, 23-26 The naive CD 
4 T lymphocytes upon stimulation differentiate into either 
Th1 or Th17 T lymphocytes depending on the cytokine 
environment.27

Type I reaction (reversal reaction)
Th1  secretes IL-  2 that leads to more differentiation 
of  the naive CD 4  cells into Th1  cells and the IFN-γ, 
TNF-β which signals for macrophage activation from 
the monocytes.25,26 Th17 has been implicated in the type I 
reaction to M.leprae. The Foxp3 staining has been observed, 
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which is a transcription factor regulating the differentiation 
of  T regulatory cell (CD 4+ CD 25+).28

T regulatory cells are involved in down regulating the 
immune response to avoid exaggerated response including 
the Th17 mediated response which seems to play a role in 
the type I reaction to M.leprae.29-32 Th17 is stimulated from 
the naive CD 4 cells by IL-6, IL-21 and TGF-β.33-43

The mature Th17 then secretes IL-17, which is a pro-
inflammatory cytokine. Also it secretes IL-21, showing 
that this cytokine has an autocrine function on Th17.44 

IL-23 are necessary for the expansion of  the already 
differentiated Th17 cells and in maintaining IL-17 secretion. 
It achieves this by binding to the IL-23R on the surface of  
the Th17 cells.38,44-47 IL-6, IL-21 stimulates the expression 
of  IL-23R.48 The IL-17, IL-21 then mediates inflammatory 
response against the pathogen.49 Mature Th17 cells have 
the ability to secrete TNF-α, and also it can stimulate 
other immune cells to secrete the cytokine.50,51 T regulatory 
cells have been reported that they can be genetically 
reprogrammed. Inducible T regulatory cells, in presence 
of  TNF-α, IL-6 can be reprogrammed to Th17 phenotype. 
Naturally occurring T regulatory cells can be stimulated to 
secrete IL-17 and to down regulate their Foxp3 expression 
in the presence of  IL-6, IL-  23 and IL-1.52-55 This can 
serve as a potential therapeutic target into enhancing 
the immune response to M.leprae, or suppressing the 
exaggerated leprosy reactions. Appropriate reprogramming 
factors should be sought for. The monocytes then cross 
the endothelium, become macrophages with a capacity to 
carry out phagocytosis. The phagocytosis by macrophages 
is mediated by complement receptors CR 1 (CD 35), 
CR 3 (CD 11b/CD 18), and CR 4(CD 11c/CD 18) and is 
regulated by protein kinases.56,57 This leads to granuloma 
formation, with differentiated macrophages, epithelioid 
and giant cells with a reduction in the bacillary load 
(paucibacillary).

The Th1, Th17 mediated response is effective against 
M.leprae. It’s an upgrading immune response that leads to 
the tuberculoid pole. Due to the predilection of  M.leprae to 
the extreme cool ends and in the nerve Schwann cells, the 
type I reaction leads to severe nerve damage, characterized 
by nerve thickening with lose of  motor and/or sensory 
activity in the affected regions, edema and erythematous 
skin lesions. Systemic involvements are rare.

Type II reaction (Erythema nodosumLeprosum)
The type II reaction, erythema nodosumleprosum occurs 
in the lepromatous pole. It’s a Th2 mediated response with 
the involvement of  the antibodies.5,58 Some studies have 
shown a ratio of  1: 2 for CD 4+: CD 8+ T lymphocytes.58 
The cytokines involved include IL-1β, IL-4, IL-6,and 

TNF-α.25,59-62 They signal for the synthesis of  specific 
antibodies from the B lymphocytes which are specific to the 
epitopes on the M.leprae. Immune complexes are formed 
which are eliminated by the complement activation.63 The 
large amount of  TNF-α observed has been linked to the 
chemotaxis of  neutrophils into the inflammatory sites.64 
The expression of  the E-selectin leads to the attachment 
of  the polymorphonuclear cells to the endothelial cells 
leading to diapedesis, and their infiltration into the infected 
tissue. The infiltration by neutrophils also leads to tissue 
damage due to the lysosomal enzymes that they secrete. 
The damage is especially in the peripheral nerves and the 
extremities, with loss of  motor activities and/or sensation 
and multiple skin lesions characterized by erythema, edema 
with systemic manifestations of  fever, arthralgia, weight 
loss, lymphadenopathy, anorexia, and edema. The type II 
reaction is not effective against M.leprae as biopsy samples 
of  individuals with the lepromatous leprosy shows cells 
with multiple acid-fast bacilli implying they have a specific 
energy to M.leprae.

The leprosy reactions occur before, during and after 
completion of  multidrug therapy.5 It’s the main reason for 
the neuropathy and the skin deformation that befalls on 
the leprosy infected individuals. Intake of  corticosteroids, 
emotional/physical stress, and pregnancy predisposes to 
these reactions.65 Individuals with HIV/AIDS have not 
shown a higher susceptibility to leprosy, even with the 
reduced CD 4+ T cell count to100  cells/μL. However 
some studies have shown that leprosy reactions can occur 
in individuals co-infected with HIV after antiretroviral 
therapy.

CONCLUSION

The Th17 lymphocytes offer a new therapeutic potential 
into enhancing the immune response in the Lepromatous 
pole cases. The Th1 and Th17 response is more effective 
and this reduces on the nerve, skin lesions and the systemic 
effects of  M.leprae infection. Upgrading the response will 
improve on the management of  leprosy.
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