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Abstract 

The purpose of the present paper is to study the contact conformal curvature tensor in LP-Sasakian 

manifolds. Some properties of contact conformally flat,  -contact conformally flat and contact 

conformally semi-symmetric LP-Sasakian manifolds are obtained. 
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1. Introduction 
 

The contact conformal curvature tensor is a curvature like tensor defined on a contact metric manifold 

which is constructed from the conformal curvature tensor by using the Boothby-Wang's fibration [1]. 

Jeong, Lee and Pak [2] defined the contact conformal curvature tensor on  12 n -dimensional Sasakian 

manifolds and proved that it is invariant under D-homothetic deformation. They also proved that a 

Sasakian manifold  212  nM n
 with vanishing contact conformal curvature tensor field is of constant 

-homothetic sectional curvature    .1/]13[  nnnnr  Pak and Shin [3] gave a geometric 

characterization of a contact metric manifold with vanishing contact conformal curvature tensor by 

showing that for ,2n every  12 n -dimensional contact metric manifold with vanishing contact 

conformal curvature tensor is a Sasakian space form. Bang and Kye [4] studied contact conformal 

curvature tensor on 3-dimensional Sasakian manifolds and gave a partial extension of Pak and Shin's result 

to 3-dimensional locally  -symmetric contact metric manifold and also showed that the contact conformal 

curvature tensor on 3-dimensional Sasakian manifold always vanishes. On the other hand, Matsumoto [5] 

introduced the notion of Lorentzian para-Sasakian manifold. Then Mihai and Rosca [6] introduced the 

same notion independently and obtained many results on this manifold. Lorentzian para-Sasakian 

manifolds have also been studied by Matsumoto and Mihai [7], De et al. [8], Shaikh and Biswas [9] and 

Bagewadi et al. [10]. 
 

2. Preliminaries 
 

A differentiable manifold of dimension  12 n is called Lorentzian para-Sasakian manifold (briefly, LP-

Sasakian manifold) if it admits a (1, 1) tensor field , a contravariant vector field , a 1-form  and a 

Lorentzian metric g which satisfy 
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(2.1)          ,,1 2  XXX   

(2.2)           ,,, YXYXgYXg    

(2.3)        ,, XXg    

(2.4)         ,X
X

   

(2.5)               ,2,  YXXYYXgY
X

  

where  denotes the covariant differentiation with respect to the Lorentzian metric g [5,7]. 

In an LP-Sasakian manifold it can be easily seen that; 

(2.6)    .2rank,0,0 n  
 
If we put 

(2.7)               ,,, YXgYX   

for any vector fields X and ,Y then the tensor field  YX ,  is a symmetric (0, 2) tensor field [5]. 

Also since the 1-form   is closed in an LP-Sasakian manifold we have 

(2.8)              ,0,,,,,   XYXgYXgYXY
X

 

for any vector fields X  and Y  [5,9]. An LP-Sasakian manifold M is said to be  -Einstein if its 

Ricci tensor S of type (0, 2) is of the form 

(2.9)           ,,, YXbYXagYXS    

for any vector fields X and ,Y  where ba,  are smooth functions on the manifold. In particular, if ,0b

then the manifold is said to be an Einstein manifold. In a  12 n -dimensional LP-Sasakian manifold the 

following relations hold: 

(2.10)             ,,,, YZXgXZYgZYXR    

(2.11)          ,,, XYYXgYXR    

 (2.12)            ,, YXXYYXR    

(2.13)               ,,  XXXR   

(2.14)               ,2, XnXS    

 (2.15)            ,2,, YXnYXSYXS    

for any vector fields YX , and ,Z where R and S are the Riemannian curvature tensor and Ricci tensor of 

the manifold, respectively [8, 9]. In a  12 n -dimensional LP-Sasakian manifold the contact conformal 

curvature tensor 
0

C of type (1, 3) is defined by [2] can be written as 

(2.16)              
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where QSR ,,  and r denote the curvature tensor, the Ricci tensor, the Ricci operator and the scalar 

curvature, respectively. 

Definition 2.1  A  12 n -dimensional LP-Sasakian manifold M is said to be contact conformally 

flat if the condition 

(2.17)       0,
0

ZYXC  

holds. 

Definition 2.2 A  12 n -dimensional LP-Sasakian manifold M is said to be  -contact conformally 

flat if  

(2.18)        .0,
0

YXC  

Definition 2.3 A Riemannian or pseudo-Riemannian manifold is said to be semi-symmetric if the 

condition  

(2.19)       0., RYXR  

holds, where  YXR ,  denotes the derivation in the tensor algebra at each point of the manifold. 

Definition 2.4 A  12 n -dimensional LP-Sasakian manifold M is said to be contact conformally 

semi-symmetric if 

(2.20)       .0.,
0
CYXR

 
 

3. Results and Discussion  
 

We prove the following results which are related with above definitions 

Theorem 3.1 A contact conformally flat LP-Sasakian manifold M of dimension  12 n  is an  -

Einstein manifold. 

Proof: Let us consider a contact conformally flat LP-Sasakian manifold ,M then (2.17) holds and 

from (2.16) we have 
(3.1)            
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Taking inner product on both sides of (3.1) by ,W  we get 
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where     .,,,,,
~

WZYXRgWZYXR  Setting W in (3.2) and using (2.1), (2.3), (2.6), (2.10), 

(2.14) and then further simplifying yields 

(3.3)       
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In (3.3) replacing X by  and using (2.1), (2.3) and (2.14), we get 

(3.4)  
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Equation (3.4) implies that  

(3.5)         ,,, ZYZYgZYS    

where 
   

 12

232542 2






nn

rnnnn
  and 

   
 

.
12

232762 2






nn

rnnnn
 The relation 

(3.5) implies that the manifold is an  -Einstein manifold. This completes the proof of the theorem. 

Theorem 3.2 Let M be a  12 n -dimensional LP-Sasakian manifold. If the condition 

  0,
0

YXC holds in ,M then the manifold is an  -Einstein manifold. 

Proof: Let us consider a  12 n -dimensional LP-Sasakian manifold M which is  -contact 

conformally flat, then we have   .0,
0

YXC Now, replacing Z by  in (2.16) and using (2.1), 

(2.3), (2.6), (2.12), (2.14) and (2.18), we get 
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Taking inner product on both sides of (3.6) by ,W  we obtain  
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(3.7)   
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Putting X in (3.7) and using (2.1), (2.3) and (2.14), we get 

(3.8)  
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From (3.8), we have 

(3.9)           ,,, WYBWYAgWYS   

where 
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B Hence the 

manifold is an  -Einstein manifold. This completes the proof of the theorem. 

Theorem 3.3 A contact conformally semi-symmetric LP-Sasakian manifold  gM n ,12 
 is an Einstein 

manifold and a manifold of constant curvature  .122  nnr  

Proof: Let us consider an LP-Sasakian manifold  gM n ,12 
 satisfying the condition   .0.,

0
CYXR  

Now, we have  

(3.10)    
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In view of (2.20) and (3.10), we get 

(3.11)   
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Taking X  in (3.11) and using (2.11), we obtain 

(3.12)   
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Taking inner product on both sides of (3.12) by , we get 

(3.13)  

            

              

         .,,,       

,,,,       

,,,,,0

00

000

000

YVUCZVUCZYg

ZYUCVZUCVYgZVYCU

ZVCUYgYZVUCYZVUCg













 

 

Putting UY  in (3.13) we obtain 

(3.14)  
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Now, from (2.16) we have 

(3.15)       ,0,
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(3.16)  
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By virtue of (3.15) and (3.17), (3.14) reduces to 
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Let  12,..,2,1:  nie
i  

be an orthonormal basis of the tangent space at any point of the manifold. 

Putting 
i

eU  in (3.18) and taking summation over ,121,  nii  we get 
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Again, from (2.16) it follows 
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under the condition   0..  Qtrtr  and by the use of (2.2), (2.8) and (2.15). From the definition of 

contact conformal curvature tensor, we also have 

(3.21)       
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In view of (3.16), (3.20) and (3.21), (3.21) takes the form 
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where 
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.
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rnnn 
  

Taking an orthonormal frame field at any point of the manifold and contracting over V and Z in 

(3.22) we get 

(3.23)          .122  nnr  

Using (3.23) in (3.22) we obtain 

(3.24)         .,2, ZVngZVS   

In view of (3.23) and (3.24), the theorem is proved. 

 

4. Conclusions 
 

In this paper, we have studied on contact conformal curvature tensor in a  12 n -dimensional 

Lorentzian para-Sasakian manifold (briefly, LP-Sasakian manifold). We have investigated that  
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contact conformally flat and  -contact conformally flat LP-Sasakian manifold is an  -Einstein 

manifold. It is also proved that a contact conformally semi-symmetric LP-Sasakian manifold is an 

Einstein manifold.  
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