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ABSTRACT 

When electrons of two electronic bands participate in superconducting 

phenomena, it is said to be two gap superconductor. There are two set of cooper 

pairs in different energy gap with different energy. The observation of Leggett’s 

mode in two band superconductor provides an additional information about 

superconductor. By using the effective action, the thermodynamic potential in the 

case of neutral and charged two gap superconductor are calculated.  Using phase 

dependent action, we investigate a collective excitation (Leggett’s mode) 

corresponding to small fluctuations of the relative phase of two condensates in 

two band superconductor. We consider the possibility of observing Leggett’s 

mode in MgB2 superconductor and conclude that for the known values of two 

band model parameters for MgB2, Leggett’s mode rises above the two particle 

threshold. 

  
 

 

 
1. Introduction 

 

Superconductivity was first discovered by Dutch 

Physicist H .Kamerlingh Onnes , three years after 

he liquefied helium. He found that the resistance of 

mercury dropped to almost zero when the sample 

was sufficiently cooled to low temperature. Cooper 

pairs are responsible for the phenomenon of 

superconductivity. The electrons with opposite 

momentum and spin undergo Bose-Einstein 

condensation to form cooper pair. Exchange of 

phonon between electrons seems to have an 

attraction between electrons thus forming cooper 

pairs [1]. 

In the presence of weak uniform magnetic field, 

number of cooper pairs and their internal structure 

is unaltered. It leads to the vanishing of magnetic 

field in the interior of bulk superconductor. A 

superconductor in an external magnetic field carries 

an electric current near its surface. This current is 

of magnitude such that it cancels the external 

magnetic field. Thus there is no field inside 

superconductor [2]. This is called Meissner effect.  

If the electrons of single electronic band are 

participating for superconducting state, material is 

said to be one gap superconductor. Energy required 

to break cooper pairs is same if all the pairs are 
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formed with same energy and hence shows only 

one gap. If the electrons of two electronic bands are 

participating for the superconducting state, material 

is said to be two gap superconductor. There are two 

set of cooper pairs in different energy bands and 

energy required to break the pairs is also different. 

Interestingly cooper pairs of both bands are created 

at same critical temperature. The Josephson effect 

occurs if two superconductors are separated by a 

thin insulator. The tunneling of cooper pairs 

through the insulator was first introduced by 

Josephson [3, 4, 5]. 
 

The study of multiband superconductors started 

from the works of Moskalenko, Suhl, Peretti and 

Kando, as a generalization of Bardeen-Cooper-

Schrieffer (BCS) theory to a multi gap 

superconductors. In the case of multi gap 

superconductors, coulomb repulsive interaction 

turns the one plasma mode into a gapped plasma 

mode. These modes are massive due to Josephson 

interactions. There is a possibility that some of 

these modes become massless Nambu-Goldstone 

modes when the Josephson couplings are frustrated. 

The Josephson couplings between different bands 

will bring about attractive phenomena: they are 

time reversal symmetry breaking and existence of 

gapless modes. The phase difference mode between 

two gaps is called Leggett’s mode [6].This mode 

yields new excitation modes in multi-gap 

superconductors. The Leggett’s mode is realized as 

a Josephson Plasma oscillation in layered 

superconductors. 
 

The fluctuation of the inter band phase difference 

in the multi-gap superconductor is Leggett‘s mode. 

This fluctuation can elevate the superconducting 

transition temperature. According to conventional 

superconducting microscopic BCS theory, the 

Leggett’s mode is not implemented and their 

entropy is not taken into account. The formation of 

pair means the loosing of entropy. The competition 

between the gain of the energy due to gap evolution 

and the cost due to missing entropy determines if 

BCS gap opens or not. If the pair still has entropy 

after the formation, the cost due to missing entropy 

is reduced. This reduction assists the evolution of 

gap. The entropy, which Leggett’s mode has 

corresponds to entropy of the pair [7]. 
  

2. Theory 
 

Microscopic BCS theory for development of 

Hamiltonian of the system 
 

We consider two electron system in Fermi sea 

which aren’t interacting with each other. The 

electrons have equal and opposite spin so that the 

lowest energy state have total momentum zero [4]. 

The Hamiltonian gives the total energy of the 

system. Hamiltonian can be expressed  as  

 Ĥ =  ∑ T(xk) + 
1

2

N

k=1

 ∑ V(xk, xl)

n

k=l=1

 

where T is kinetic energy and V is potential energy 

of interaction between particles , xk describes the 

coordinate of kth particle. Similarly, xl denotes the 

co-ordinate of lth particle.  

In case of two gap superconductor, Hamiltonian is ,  

Ĥ =  ∑ĤTB,l + ĤT

l

 

where,    ĤTB,l is Hamiltonian for two band 

superconductor in ith layer and Hamiltonian ĤT 

describes the electron tunneling between two 

adjacent S layers through the insulator. 

This can be expressed as,  

 ĤT = ∑(Tijcσ,1
i† cσ,2

j
+ h. c. )

i,j,σ

 

where,  Tij  is the tunneling matrix element for an 

electron from i to j band. Also, cσ,l
i†  and cσ,l

i  denote 

the operator which create and destroy an electron 

with spin σ in the i-band. In the absence of 

magnetic field,  

ĤTB,l = ∑ Eicσ,l
i† cσ,l

i + Ĥl
pair

i=s,d

 

where,  Ei is the energy of electron in i-band (i = s 

or d band) about Fermi energy. Hl
pair

 is 

Hamiltonian for interaction between electrons. 

According to Leggett, BCS wave function in terms 

of pairing operator can be expressed as,  
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ψl
i = c↑,l

i†c↓,l
i†

 

By using this concept, Pairing Hamiltonian can be 

written as 

Ĥl
pair

= −Vssc↑,l
s†c↓,l

s†c↓,l
s c↑,l

s − Vddc↑,l
d†c↓,l

d†c↓,l
d c↑,l

d

− Vsd(c↑,l
s†c↓,l

s†c↓,l
d c↑,l

d + h. c. )  

 

Here, Vij is the strength of pairing interaction 

potential. Interband pairing interaction between two 

electrons in s and d band is described by the 

Hamiltonian Hinter,l
pair

 which is the last term of the 

above relation. This can be expressed as, 

Ĥinter,l
pair

= −Vsd ∑ck↑,l
i†  c−k↓,l

i†  c
−k′↓,l

j
 c

k′↑,l

j

k,k′

 

Here, i and j can take same value. By using this 

Leggett concept, total Hamiltonian for our system 

[5, 9] will be 

                       Ĥ = ∑Ek
sck,σ

†

k,σ

ck,σ + ∑Ek
dck,σ

†

k,σ

ck,σ

− ∑Vk,k′
ss ck↑

† c−k↓
† c−k′↓ck′↑  

k,k′

− ∑Vk,k′
dd dk↑

† d−k↓
† d−k′↓dk′↑  

k,k′

− ∑Vk,k′
sd (ck↑

† c−k↓
† d−k′↓dk′↑  

k,k′

+ dk↑
† d−k↓

† d−k′↓dk′↑  )  

 

Collective Excitation 
 

Bogolyubov and Anderson discovered that density 

oscillation can couple for oscillation of the phase of 

superconducting order parameter through pairing 

action. In neutral system, these collective sound 

like oscillation are known as Bogolyubov Anderson 

Goldstone (BAG mode). In charged system, the 

frequency of the mode is pushed into plasma 

frequency due to coulomb interaction [8]. A main 

idea beyond this approach is rather simple since the 

collective modes present low energy degree of 

freedom. 

Physically, Leggett’s mode is a collective 

excitation corresponding to a small fluctuation of 

the relative phase of two band superconductor. 

Leggett’s mode is obtained using the modulus of 

phase variables in the path integral formalism. 

The action integral is given by,  

  S =  ∫ dτ[ ∑ ck,σ
i  ∂tck,σ

i +i,σ,k
β

0

 Ĥ(c)] 

The effective action can be written as,  

   S =  Spair + Scoulomb 

Using Hubbard - Stratonovich transformation and 

Nambu notation, the effective action becomes,  

S =  ∫ {∑[
ϕ

k⃗⃗ 
s†ϕ

k′⃗⃗⃗⃗ 
s

gss
+

ϕ
k⃗⃗ 
d†ϕ

k′⃗⃗⃗⃗ 
d

gdd
k⃗⃗ k′⃗⃗⃗⃗ 

β

0

− 
gsd

gssgdd
 (ϕ

k⃗⃗ 
s†ϕ

k′⃗⃗⃗⃗ 
s )  ] − TrlnGs

−1

− TrlnGd
−1}  

Now, the thermodynamic potential can be written 

as,  

Ω = 
1

β
 ∫ dτ [

|Δks|2

gss
+ 

|Δkd|2

gdd

β

0

− 2
gsd

gssgdd
|Δks||Δkd|cos (θs

− θd)] − 
1

β
(TrlnGs

−1 − TrlnGd
−1) 

Here,  Ω can be written as the sum of Ωkin and 

Ωpot as,  

                        Ω(Δi, θi,ϕ) =  Ωkin(Δi, θi, ϕ) +

 Ωpot(Δi, θi, ϕ) 

where, Ωkin is the sum of energies of phase 

fluctuations in each band and Ωkin is responsible 

for the appearance of Leggett’s mode term in the 

Josephson coupling energy of the condensates in 

two bands. This term explicitly depends on relative 

phase ( θ1 − θ2 ) of two condensates. 

If we minimize Ω with respect to θs − θd, we get 

dΩ

d(θs − θd)

=  
1

β
 ∫ dτ

β

0

∑
2gsd

gssgdd
 |Δks||Δkd| sin(θs − θd)

= 0 

From this we obtain,  
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Δs − 
gsd

gdd
 Δd − gssΔ

sN1F(δ1) = 0 

                            and,    

Δd − 
gsd

gss
 Δs − gddΔ

dN2F(δ2) = 0. 

where, Ni = 
mipfi

2π2  is the density of states in ith 

band. 

In case of neutral superconductor, the terms with 

electric potential disappear from the equations 

above, and we can get  ω2 = ω0
2 + v2k2 for 

positive solution and ω2 = c2k2 for negative 

solution where c2 = 
N1C1

2+ N2C2
2

N1+N2
 and v2 =  

N1C2
2+ N2C1

2

N1+N2
. 

The positive solution corresponds to Leggett’s 

mode whereas negative solution corresponds to 

BAG mode. The collective mode is only possible if 

ω0
2 > 0 since V12 > 0 (H. Goldstein et al. 2011). 

This implies that Leggett’s mode exists for V11V22 – 

V12
2  > 0. 

But in case of charged superconductor, long 

distance coulomb interaction has a drastic influence 

on BAG mode transforming in the plasma mode. 

Here we get,  

ω2 = ω0
2 + v2k2 

  where, v =  
(N1+N2)C1

2C2
2

N1C1
2+ N2C2

2    

This represents that the equation for collective 

mode has only solution describing Leggett’s mode. 
 

3. Results and Discussion 
 

Recently discovered MgB2 superconductor can be 

described by the classical two gap model which 

convincingly fits the specific heat and penetration 

depth measurement. To be observed 

experimentally, Leggett’s mode should have the 

value of ω0 in a well separated from two particle 

threshold given by smallest gap  δ1. Here we 

estimate the value of ω0 using recently suggested 

values of the coupling constants, introducing the 

dimensionless coupling constants, λij = NiVij that 

are often used for description of two band model. 

We may rewrite equation of ω in the form as,  

   ω2 = 
4(λ12+ λ21)Δ1Δ2

λ11λ22− λ12λ21
 

For specific value of coupling constants λ11 =

0.96,  λ22 = 0.28, λ12 = 0.16, λ21 = 0.22 making 

Δ1 = 1.8 MeV fixed we get, ω0 = 3.42√Δ2 

 

 
Fig. 1: Variation of ω as a function of gap 

parameter ∆2 for λ11 = 0.96 λ22 = 0.28, λ12 = 0.16, 

λ21 = 0.22 and varying ∆2 from 1.11 mev  

 

The Fig. 2 represents a parabola with vertex at 

origin. Here, ∆1= 1.8 MeV so 2∆1= 3.6 MeV. If 

∆2= 1 MeV, ω0 = 3.42 Hz, which in turn implies 

that the ratio 
ω0

2∆1
 > 1.  This is the reason why we 

exclude ∆2= 1 MeV and Leggett’s mode is 

unlikely to be observed in MgB2. 

Making ∆2= 8 MeV, we get ω0 = 4.26√∆1 and 

the graph is plotted as, 

 

 

 
Fig. 3: Variation of frequency ω as a function of 

gap parameter ∆1  for  λ11 = 2 λ22 = 2, λ12 = 1, λ12 = 

1 and varying ∆1 from 8 mev. 
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Here we fix ∆2= 8 MeV, the nature of the curve is 

a straight line. If ∆1= 8 MeV, ω0 = 13.07 Hz, 

which implies 
ω0

2∆1
 < 1 and explains that Leggett’s 

mode is likely to be observed in MgB2. 

The results suggest that for the values of two band 

model parameters known at present for the two 

band model of MgB2, Leggett’s mode arises above 

the two  particle threshold and unlikely to be 

observed. 
 

We don’t exclude however, that Leggett’s mode 

can be observed in MgB2 if the values of coupling 

constants λ12 and λ21 would become smaller. The 

observation of Leggett’s mode provides an 

additional insight to the underlying physics of such 

a superconductor. 
 

4.  Conclusion 
 

Leggett’s mode is a collective excitation 

corresponding to a small fluctuation of the relative 

phase of two band superconductor. Leggett’s mode 

is obtained using the modulus of phase variables in 

the path integral formalism. This  work  presents  

the study of validity of Leggett’s mode in the two-

gap superconductor like magnesium-diboride. 

Starting from the  microscopic BCS Hamiltonian of 

the system we derived effective action of the 

system and thermodynamic potential. We obtained 

the condition if the ratio   
ω0

2∆1
 < 1 Leggett’s mode is 

likely to be observed on the other hand when  
ω0

2∆1
 > 1  Leggett’s mode is unlikely to be observed 

in MgB2. 
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