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Abstract 

In this work, we use the parametric generalization of the Nikiforov-Uvarov method to obtain the 
relativistic bound state energy spectrum and the corresponding spinor wave-functions for four-
parameter diatomic potential coupled with a Coulomb-like tensor under the condition of the 
pseudo-spin symmetry. Also, some numerical results have given. 
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1.   Introduction  
 

Since the solutions of the Dirac equation with physical potential are very useful to investigate the 
relativistic effects, especially a strong coupling system [1]. Recently, some authors have been 
solved approximately the Dirac equation for some potentials like the Eckart potential [2], Resen-
Morse potential [3], Poschl-Teller potential [4, 5], Woods-Saxon potential [6], Scarf potential [7, 8], 
etc. The spin and pseudo-spin symmetry concepts in nuclear theory [9, 10], have been used to 
explain the features of deformed nuclei [11], super-deformation [12], and also to establish an 
effective nuclear shell-model scheme [13]. Ginocchio has been showed that pseudo-spin 

symmetry is exact when the sum of the vector potential )(rVv  and scalar potential )(rVs  is equal 

to zero or a constant, pseudo-spin symmetry occurs in the Dirac equation [14, 15]. Of course, in 

real nuclei, .)()( constrVrV sv ≠+  and pseudo-spin symmetry is only an approximation. On the 

other hands, tensor potentials have been introduced into the Dirac equation with the substitution. 
In this way, a spin-orbit coupling term was added to the Dirac Hamiltonian [7, 16-23].  

The four-parameter diatomic potential (FPDP) [24] following as:   
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where ( 1)eD D e ς= − , / erα ς=  , eD  is the depth of the potential well, er  is the equilibrium 

distance of of the two nuclei, and ς , q are real parameters. 
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Recently, C. Gang [25] has been studied solution of the Dirac equation with this Potential by 
using the supersymmetric quantum mechanics.  
The motivation of the present work was to solved the Dirac equation under the pseudo-spin 
symmetry for FPDP that including a Coulomb-like tensor potential [16]  
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where =cR 7.78 fm is the Coulomb radius, aZ and bZ denote the charges of the projectile a and 

the target nuclei b, respectively. 
The parametric generalization of the Nikiforov-Uvarov (NU) method have been used to obtain the 
Dirac equation with this potential. The energy eigenvalues equation and the corresponding 
unnormalized eigenfunctions have been obtained. 
 
2.   NU Method     
  
We give a brief description of the conventional NU method [26]. This method is based on solving 
the second-order differential equations by means of special orthogonal functions. The mean 
equation which is closely associated with the method is given in the following form 
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where )(sσ  and )(~ sσ  are polynomials, at the most of the second degree, and )(~ sτ  is a 

polynomials, at most of the first degree. Let us discuss the exact particular solution of Eq. (3) by 

choosing )()()( syss nn φψ =  resulting in a hypergeometric type equation of the form 

0)()()()()( =+′+′′ sysyssys nnn λτσ                        (4) 

where 
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s s s
ds

π σ ϕ=                       (5) 

0)(),(2)(~)( <′+= ssss τπττ               (6) 

where )(rπ  is a polynomial of order at most one. 

The first part of the wave function, i.e. )(syn , is the hypergeometric-type function whose 

polynomials solutions are given by Rodrigue's relation 
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where na  is a normalization constant and the weight function )(sρ  must satisfy the differential 

equation 

( )
( ) ( ) 0,

( )

s
s s

s

τ
ω ω

σ
 

′ − = 
 

   ( ) ( ) ( )s s sω σ ρ=           (8) 

The function )(sπ and the parameterλ  in the above equation are defined as follows  
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( )k sλ π ′= +                                (10) 
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The determination of k is the essential point in the calculation of )(sπ . It is simply defined by 

setting the discriminate of the square root which must be zero. The eigenvalues equation have 
calculated from the above equation 

,...2,1,0).(
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−′−== ns

nn
snn στλλ .                 (11) 

In order to clarify the parametric generalization of the NU method, let us take the following 
equation, which represents a general form of the Schrodinger-like equation written for any 

potential by an appropriate coordinate transformation )(rss = . Thus, we obtain another 

generalized hypergeometric equation [18]  

  ( ) ( ) ( )
2
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3 3 1 2 1 2 32
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d d
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When (12) is compared with (3), we get 

1 2( )s sτ α α= −ɶ , ( )3( ) 1s s sσ α= − ,       
2

1 2 3( )S s sσ ξ ξ ξ= − + −ɶ                (13) 

Substituting these into (9), we find  

4 5( )s sπ α α= + ( ) ( )
1

2 2
6 3 7 8k s k sα α α α ± − + + +          (14) 

where the parameter set are 

( )4 1

1
1

2
α α= − , ( )5 2 3

1
2

2
α α α= − , 

2

6 5 1α α ξ= + , 

7 4 5 22α α α ξ= − , 
2

8 4 3α α ξ= +                                         (15) 

We obtain the parameter k from the condition that the function under the square root should be 
the square of a polynomial 

( )1,2 7 3 8 8 92 2k α α α α α= − + ±                  (16) 

where 
2

9 3 7 3 8 6α α α α α α= + +                  (17) 

For each k the following π ’s are obtained. The function )(sπ  becomes 

4 5 9 3 8 8( ) [( ) ]s s sπ α α α α α α= + − + −         (18) 

for the k-value 

( )7 3 8 8 92 2k α α α α α= − + −                   (19) 

We also have from ( ) ( ) 2 ( )s s sτ τ π= +ɶ , 

1 4 2 5( ) 2 ( 2 )s sτ α α α α= + − − 9 3 8 82[( ) ]sα α α α− + −            (20) 

Thus, we impose the following condition to fix the k-value 

2 5 9 3 8( ) ( 2 ) 2( )sτ α α α α α′ = − − − + 3 9 3 82 2( ) 0.α α α α= − − + <           (21) 

When (10) is used with (20) and (21) the following equation is derived 

3 2 5 9 3 8[( 1) 2 ] (2 1)( )n n nα α α α α α− + − + + + 5 7 3 8 8 92 2 0α α α α α α− + + + =    (22) 

By using (8) 
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and together with (7), we have 
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where 

 10 1 4 82 2α α α α= + +                  (25) 

and 

11 2 5 9 3 82 2( )α α α α α α= − + +              (26) 

and 
),( βα

nP  are Jacobi polynomials. By using (5), we get 
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and the total wave function become 

1113
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 Ψ = − −ns s s P s

αα α αα
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where 
12 4 8α α α= +  and

13 5 9 3 8( )α α α α α= − + . 

 
3.   Solution of the Dirac equation     
  
According to the report which have been given in the researcher [4, 7, 16-20], the Dirac equation 
of a nucleon with mass M moving in a scalar and a vector potential including tensor interaction for 

spin-1/2 particles can be written as ( 1== cℏ ), 
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and E is the relativistic energy of the system and ∇−=
��
iP  is the three-dimensional momentum 

operator. In which σ
�

 is vector Pauli matrix. In Pauli-Dirac  
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where ( )nkF r and ( )nkG r  are upper- and lower-components of the Dirac spinors and k is 

eigenvalue of the spin-orbit matrix operator [27]. ( , )l

jmY θ ϕ  and  ( , )l

jmY θ ϕ  are spin pseudospin 

spherical harmonics,  respectively, and m is the projection of the angular momentum on the z-
axis.  
Substituting (31) into (29) and using the following relations [28] 
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and properties 
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 yields two coupled differential equations as follows 

                         [ ]( ) ( ) ( ) ( )
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where ∆  and Σ  have been assumed to be radial functions, i.e., )()()( rVrVr sv −=∆  and 

)()()( rVrVr sv +=Σ . 

By substituting ( )nkG r  from (38) into (39) and ( )nkF r  from (39) into (38), we have been 

obtained the following two second-order differential equations for the upper and lower 
components, 
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 In the above equations ( 1) ( 1)k k l l+ = +  and ( 1) ( 1)k k l l− = +ɶ ɶ . 

Substituting (1) and (2) into (41), considering pseudo-spin symmetry, taking )(r∆  as the FPDP 

and .)( constCr ps ==Σ )0/)(( =Σ drrd , [29, 30] i.e., the equation have been obtained for the 

upper component of the Dirac spinor )(rFnk becomes 
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2

( )( ) ( ) ( ) 0
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D
M E M E C E M C F r

e qα
                  (42) 

This equation is describes a particle of spin-1/2 such as the electron in the Dirac theory with 
FPDP potential including a tensor coupling, that can not be solved analytically because of 

2( )( 1) /k H k H r+ + −  term, we take the following approximation [31, 32]  
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1 2

0 22 2

0

1 1
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C C
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r r e q e q
α α

 
 ≈ + +
 − − 

                 (43) 

where 0 ,C 1C  and 2C are real constant, [ ]0

1
.log 1 2 ( 1) /r Aα α

α
′ ′= + − , where α , α ′  and A are 

constant and q is real parameter and constant, also [31]. By using a transformation of the form 
res α= , we rewrite  it as follows 
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By comparing (44) with (12), we have been obtained the parameter set as 

q−=1α , 2 1α = ,  3 1α = ,  ( )4 1 / 2qα = + ,  5 1/ 2α = − , 6 11/ 4α ξ= + , 

( )7 21 / 2qα ξ= − + − ,  ( )2

8 31 / 4qα ξ= + + ,  
2

9 1 2 3 / 4qα ξ ξ ξ= − + + , 

( )2

10 31 2 1 / 4qα ξ= + + + ,        ( )22

11 1 2 3 3
2 2 / 4 1 / 4 = + − + + + + + 
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1
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The energy eigenvalue function is obtained from eq. (22) as follows: 

[( 1) 2]n n − + ( )22

1 2 3 3(2 1) / 4 1 / 4n q qξ ξ ξ ξ + + − + + + + + 
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1 2 3 32 / 4 1 / 4 0q qξ ξ ξ ξ+ − + + + + = (47) 

Some numerical results are given in table 1. we use the parameters 6psC = − ,  1M = , 

0.05α = , 
0 0.000208178C = , 

1 0.002500011408C = , 
2 0.002499999716C = , 30.52A = , 1.5α′ = , 

5H = , 1q = , 0.03815D = − . The lower component of the Dirac spinor is obtained from (28) as 

follows: 
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where nkB  is the normalization constant to be determined from the normalization condition 
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Table 1. The bound state energy eigenvalues 
,n kE  in unit of fm

-1
 of the pseudospin symmetry 

FPDF for several values of n and k . 

 
 
 

4. Conclusion 
      

In this paper, by using the parametric generalization of the NU method, we have been solved 
analytically the approximate energy eigenvalues equation and the corresponding unnormalized 
wave-functions of the Dirac equation for the FPDP coupled with a Coulomb-like tensor under the 
condition of the pseudo-spin symmetry. Some numerical results are given for this potential. 
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