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Abstract 

Lattice dynamics of Si has been investigated by using a Urey-Bradley Valence Force Field (UVFF) model 

which is a phenomenological model. In this model following interactions are taken into account: (i) the 

central force due to bond-stretching (ii) the angular force due to bond bending (iii) central force between 

non-bonded atoms (iv) the force due to interaction of one internal co-ordinate to adjacent internal co-

ordinate. Calculated results of phonon dispersion curves, Debye Characteristic temperature, microscopic 

elastic constants and Bulk modulus of Si are compared with experimental results giving fairly good 

agreement. 
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1. Introduction 

 

Yin and Cohen [1] investigated theoretically lattice dynamical properties of diamond crystal Si  using ab 

initio pseudopotential theory within the local density functional formalism. Inter-planar and inter-atomic 

force constants in Si has been investigated using adiabatic bond-charge model by Fleszar and Resta [2]. 

Bose et al.[3] investigated phonon dispersion curves of Si  in three symmetry directions of Brillouin zone 

using the angular forces of type employed by deLaunay and Clark, Gazis and Wallis. Phonon frequencies, 

elastic constants, specific heat and Debye temperature of diamond structure crystal Si  has been 

investigated by Zdetsis and Wang [4] using Born Von-Karman (BVK) model. Lattice dynamical 

calculations of phonon scattering at ideal Si-Ge interfaces has been done by Zhao and Freund [5]. 

Dispersive elastic constants of Si has been determined by Jakata and Every [6].Maranganti and Sharma 

[7] incorporated third and fourth order spatial derivatives of the displacement field in the elastic wave 

equation to calculate elastic constants of Si.  

Urey-Bradley Valence Force Field (UVVF) model which is successfully used to investigate the lattice 

dynamics of diamond by Thapa [8] is extended to study the lattice dynamics of diamond like crystals Si. 

In this paper Urey-Bradley Valence Force Field (UVVF) is assumed to describe the forces operating 

inside the solids which crystallize in diamond structure. Urey-Bradley Valence Force Field is the 

combination of the simple valence force field and the central interaction between the non-bonded atoms. 

Thus forces considered are those which resist the extension or compression of valence bonds together 

with those which oppose the bending or torsion of bonds and central interaction between the non-bonded 

atoms. Contribution to potential energy from other neighbours except first and second neighbours has 

been neglected because of the short range character of the force field. The Coulomb electrostatic 

interactions are not considered since atomic charges are either zero or very small. 
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2. Theoretical Models 

 
Theoretical model used in this paper is reported by Thapa [8].The secular determinant for the normal modes of 

vibration of the atoms in the crystal is given by 

 

0
),( 2

=
−′ ′kkkkD δδω αβαβ q

      (1) 

Dαβ (q,kk
′
)  represents the elements of the dynamical matrix  D(q)  and ω is the angular frequency of the 

normal modes of the vibration of the crystal. δαβ  and δkk′ are the usual kronecker delta functions.   

Solving the secular determinant for long wavelength limit, following expressions for the three elastic constants 

for the diamond structure crystal are obtained in terms of model parameters kr , krr , kr1 and ϒ/r0
2
. 

C11 = 1/2a[(1/3)kr – (1/6)krr + 4kr1 + 4(ϒ/r0
2
)]  (2) 

C12 = 1/2a[(1/3)kr – (1/6)krr + 2kr1 - 2(ϒ/r0
2
)]  (3) 

C44 = 1/2a[(1/3)kr – (1/6)krr + 2kr1 + (2/3)(ϒ/r0
2
) – A

2
/B]  (4) 

where   A = - [(2/3) kr – (1/3)krr – (8/3)(ϒ/r0
2
)], B =  [(4/3) kr – (2/3)krr + (32/3)(ϒ/r0

2
)]                

Solving the secular determinant along [100] direction one gets 

(i) at zone centre ( Γ ) 

        (ωLO)
2
 ( Γ ) = 2/m[(4/3) kr – (2/3)krr + (32/3)(ϒ/r0

2
)] (5) 

(ii) at zone boundary ( X ) 

        (ωLO)
2
 ( X ) = 1/m[(4/3)kr – (2/3)krr + 8kr1 +(40/3)(ϒ/r0

2
)]  (6) 

     (ωTO)
2
 ( X ) = 1/m[(4/3)kr – (2/3)krr + 4kr1 +(20/3)(ϒ/r0

2
) +  {(4/3)kr – (2/3)krr  - (16/3)(ϒ/r0

2
)}]  

                  (7) 

 Numerical Computation  

With the help of equations (5), (6) and (7) along with equilibrium condition of the lattice model parameters are 

evaluated.  

Input data for evaluating model parameters kr, kr1 , krr and (ϒ/r0
2
) are given in table 1 & 2 while evaluated 

values of model parameters are given in table 3. 

 
Table-1:zone boundary phonon frequencies of Si  

Crystal Zone boundary and zone centre 

phonon frequencies(10
12
Hz) 

Reference 

νLO(X) νTO(X) νLO(Γ) Si 

12.32 13.90 15.53 

Nilsson and Nelin 

[9] 

 

 Table-2: Lattice constant and mass of Si  
 Crystal Lattice constant (2a) Mass(m) 

Si 5.4307 × 10
-8

 cm 46.629 × 10
-24

 gm 

Table-3:Evaluated values of Model parameters of Si 

 
 

Using the evaluated values of model parameters elastic constants C11, C12, C44 and Bulk modulus are 

evaluated using equations (2),(3)&(4). 

 
 

Crystal F orce Constants (10
4
 dyne cm

-1
) (ϒ/r0

2
) 

 

kr kr1 krr  Si 

-2.141340 0.535335 -28.824330 0.548956 
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Table 4:  Elastic cnstants and Bulk modulus in units of 1012 dyne cm-2
 

Calculated Values of others  Experimental 

values 

Jakata  and 

Every 

[6] 

 

 

Present 

Calculated 

values 

 

Sokel and 

Harrison [10] 

 

Chadi and 

Martin [11] 

 

Baraff et al 

[12] 

 

C11 1.775 1.552   1.207 

C12 0.745 0.748   0.860 

C44 0.807 0.789 0.717 0.943 0.317 

Bulk 

Mod. 

1.088 2.000 2.00   

 

The calculated values of model parameters are used to obtain phonon dispersion curves of Si  along 

[100],[11 0] and [111] directions. 

Lattice specific heats at different temperatures is  

( )∑ 







=

ν

ν
ν

Tk

h
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C

B
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3
    (8) 

 
( )2

2

1−
=

x

x

x

e

ex
E  where x = hυ/kBT. h = Plank’s constant, υ = frequency, kB is Botzmann Constant, T = 

temperature of crystal, R = Universal gas constant. 

The computed values of Cv are used to find Debye characteristic temperatures from standard table of ( Cv 

- θD/T ) from Saha and Srivastava [13]. 

 

3. Results and Discussion 

 

Elastic Constants 

The calculated values of elastic constants C11,C12 and C44 and Bulk modulus of Si in the present work 

along with their experimental values and calculated values of  by other workers are shown in the Table 4 

for comparison. 

Calculated result of C44 differs slightly with the experimental value but superior to the calculated value of 

Baraff et al [12]. Calculated values for C11 and C12 are in satisfactory agreement with their experimental 

results. The bulk modulus calculated in the present work is found to be nearly twice the experimental 

value. Surprisingly the calculated value of bulk modulus is almost equal to the value obtained by Harrison 

and Sokel [14] calculated on the basis of linear combination of atomic orbitals (LCAO). 

 

Phonon frequencies 
Propagation of acoustic phonons in Si on the basis of two lattice dynamical models: a bond-charge model 

and effective force constant model consisting of only short range forces have been investigated by 

Tamura et al. [15]. Mazur and Pollman [16] investigated lattice dynamics of Si with semi empirical 

approach using tight binding green functions and dynamical matrix of the system has been set up. Elastic 

constants and normal mode frequencies of Si has been computed with empirical Many-Body potentials  
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and compared with experimental results by Cowley [17]. None of the models tested is completely 

satisfactory.  

The results of phonon dispersion curves in present work are shown in Fig.1. along three symmetry 

directions [100], [110] and [111].The agreement of the results with the experimental values of Dolling 

[18] and Nilsson and Nelin [9] shown in the figures is fairly satisfactory. Our results are comparable with 

those of Tubino et al. [19] and superior over the results of Martin [20], Soma and Marita [21] and Sinha et 

al. [22]. 

 

 

 
Fig.1: Phonon dispersion curves of Si along symmetry direction [100],[110] and [111]. Solid circles (••••) 
represent the experimental results due to Dolling [18], Nilsson and Nelin [9]. Solid lines represent calculated 

curve.   

 Debye temperature 
Calculated Debye temperatures of Si are plotted against temperature in Fig.5 along with experimental 

points of Flubacher and Leadbetter [23] giving fairly satisfactory agreement. The calculated values 

deviate from experimental values at higher temperature. Divergence of the calculated result with 

experimental results is almost same as that of 16 parameter BVK model of  Zdetsis and Wang (1979). 

Thus only four parameter present harmonic model provides satisfactory result of Debye temperature. 

 

  

 

 

 

  

 

 

 

 

 

 

 

Fig.2: ( θθθθD – T ) curve for Si. Experimental points (0) are due to Flubacher and Leadbetter [23]. 
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4. Conclusion 

 

The present lattice dynamical model having four disposable parameters which is successful in explaining 

the phonon dispersion relations, elastic constants and Debye temperature of diamond, when extended for 

another diamond structure crystal Si is capable to explain its lattice dynamic properties- phonon 

frequencies, elastic constants and Debye temperature. This model which does not require the employment 

of elastic constants for the evaluation of its model parameters very satisfactorily reproduces the values of 

elastic constants and bulk modulus of Si. The results for these quantities obtained on theoretical 

considerations based on pseudopotential and LCAO theories are found not superior and in some cases far 

inferior to the present results. This gives an emphasis on the suitability of the application of valence force 

fields to the covalent crystals which gave highly directional bonds resulting from the well defined orbital 

hybridization. Introduction of interaction terms for changes in bond length and bond angles in the present 

formulation may improve the features of the present results. 
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