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Abstract 

We have studied the variation of Knight Shift with temperature using pseudopotential technique for Zn 

and Al metals. Knight Shift occurs due to the hyperfine contact interaction between the nucleus and 

surrounding conduction electrons. The computed values of zinc is obtained using H-eigen values with α = 

αvt  and β = 1 gives K= 0.374 against Kexp = 0.337 at 419 
0
C and 0.391 against Kexp = 0.399 at 500 

0
C. 

For Aluminium with H-eigen values and  β = 1 gives  K= 0.199  whereas  Kexp = 0.164  at 360 
0
C and  

K= 0.209  at  400 
0
C for  Kexp = 0.184 have been found. The computed values and experimental values 

are in good agreement for both metals. It reveals that the Knight Shift increases with increasing 

temperatures for Zn and Al.  
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1. Introduction 

 

It is observed that Nuclear Magnetic Resonance (NMR) associated with a metallic state is higher than the 

corresponding frequency for non-metallic state. This shift of the NMR frequency is known as the Knight 

Shift and this occurs due to the hyperfine contact interaction between the nucleus and the surrounding 

conduction electrons. The ratio of the frequency shift to the frequency at which the NMR is observed for 

the metallic state is known as Knight Shift (K). The hyperfine interaction between conduction electron 

and nuclear moment in metals provides a rich array of properties that can be studied through nuclear 

magnetic resonance technique (1-2). Although the experimental technique of the measurement of Knight 

Shift had been developed much earlier, its theoretical development was developed much later. 
 

The previous theoretical work [3-4] on the magnetic properties of metals substantiates the view that like 

electrical resistivity, the nearly free electron approximation is also valid for the theoretical treatment of 

various magnetic properties viz,, Knight shift, magnetic susceptibility, Hall coefficient etc. The study of 

the plethora of literature on pseudopotential theory and specially Harrison’s first principle technique 

brings out the fact that this property has not been studied through this technique except by Singh [5] who 

has applied it to some multivalent liquid metals. We propose to proceed on this line for the investigation 

of the Knight shift of metals under investigation for which the experimental data is available. It is 

interesting to note that the previous authors (Seymour and Styles 1966, Heighway and Seymour 1971, 

Ford and Styles 1972)  have  observed  that  the orbital effect of the electrons also contributes even in  the 



B.C. Kumar et al. / BIBECHANA 9 (2013) 33-37: BMHSS, p.34 (Online Publication:  Nov., 2012) 

 

simple metals. 
 

The experimentally measured Knight shift [2] for various metals shows insignificant change in it due to 

melting. Heine (1957) first obtained a simple expression for the Knight shift of metals in solid phase. But 

OPW method has only been used by Gerstner and Cutler (1969) for Ba and Singh (1988) for Mg, Al and 

Ga. Reasonable qualitative agreement has been obtained for the metals under investigation. Due to 

various approximations involved in the formalism of Knight shift and that of the form factor exact 

agreement is not expected. In the next sections we are presenting the formalism, result and significant 

observations. 

 

2. Formalism 

 

In this section of our study the precise theory within the framework of pseudopotential technique is 

presented. The Knight shift [7] may be written as  

                     Ωχ
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Here Pχ  is the spin paramagnetic susceptibility of conduction electron per unit volume, Ω  is the volume 

of the crystal and FP  the average electron density at the site of the nucleus from the conduction electrons 

with energy FE . 

This electron density is represented by an average of the form, 
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where, iR  is the position vector of the ith ions, N is the total number of ions and 
Fkψ  are the electron 

wave functions. In OPW approximation the wave function is expressed in terms of the pseudo wave 

function )R(kφ  and )R(αψ .  

The core wave function is written as, 

               ( ) ( )
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Here,  kC  is the normalization factor. Since the psedopotential is very weak in nature we can expand kφ  

according to the first order perturbation theory, 
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Using the above analogy we can express the electron density as, 

                   
'

F
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FF PPP +=                                                                                                  (7) 

Similarly the Knight shift may also be written as, 

                   10 KKK +=                                                                                                 (8) 

The variation of )R(
Fk

φ   in the core region is small. Thus the equations (2), (3) and (6) may be used to 

obtain  
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where P  is the Cauchy principal value. Assuming the form factor w (k, q) and structure factor a (q) to be 

spherically symmetric we get, 
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where FE  is the Fermi energy and Fk  is the Fermi wave vector. 
 

The temperature coefficient of Knight shift is represented by  
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where, T is the desired temperature and MT  is the melting point of the metal. 

 

3. Results and Discussion 

 

By applying equation (10) we have calculated Knight Shift using two different eigen values (Herman- 

Skillman and Climenti eigen values). The results have been given in Table 1 and Table 2 for Zn and Al 

respectively. The H-eigenvalues with α = αvT and β =1 we get the values of K= 0.374 (Kexp = 0.337) at 

419 
0
C and at 500 

0
C, K was found to be 0.391 (Kexp = 0.339) respectively.  Similarly we have calculated 

Knight Shift using C-eigen values; the values of Knight shift are slightly different which are shown in 

Table 1. As the other computed values of Knight Shift opting α = 2/3 and β =1 & 5/8 do not lie in the 

vicinity of experimental value, hence they are discarded. 
 

Table 1:  Results for Zn 

 

K = 0.540 

Metal 

α 

β 

єnl 
αvt 

1 

αvt 

5/8 

2/3 

1 

2/3 

5/8 

Kexp. 
Temp. 

( 
0
C) 

H 0.374 0.601 0.399 0.398 

C 0.401 0.426 0.405 0.409 
0.337 419 

H 0.391 0.621 0.399 0.399 
 

Zn 

C 0.478 0.499 0.588 0.589 
0.339* 500 

 

 

 
 
         Fig. 1 :  Temperature dependence of Knight shift of Zn  
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Table 2: Results for Al 

  

K = 0.18 

Metal 

α 

β 

єnl 
αvt 

1 

αvt 

5/8 

2/3 

1 

2/3 

5/8 

Kexp. 
Temp. 

( 
0
C) 

H 0.199 0.126 0.119 0.139 0.164 360 
Al 

H 0.209 0.142 0.142 0.147 0.184 400 

 

 

 

 
         Fig. 2 :  Temperature dependence of Knight shift of Al  

 

We have calculated the Knight shift of aluminium at different temperatures by using H-eigen values. The 

calculated and experimental values of K are very close to each other. Since the C-eigen values are not 

available for Al, therefore it was not possible to calculate. The computed values for Knight shift come to 

be 0.126 and 0.142 for   α =αvt and β = 5/8 at temperatures 360 
0
C and 400 

0
C respectively. At the same 

time the set of values obtained for α = 2/3 and  β= 1 & 5/8 are  0.119 & 0.142 and 0.139 & 0.147 

respectively. From the above mentioned table it is evident that the closest approach obtained from the 

computation is for α = αvt  and  β=1 . The value 0.199 and 0.209 also lie very close to experimental 

values 0.164 and 0.184 for two different opted temperatures 360 
0
C & 400 

0
C respectively. The 

temperature dependence of Knight shift of Zn and Al has been shown in Fig. 1 and Fig. 2 respectively 

with two sets of eigen values, and the estimated experimental curve have also been given for comparison. 

 

4. Conclusion 

 

For Zinc, temperature dependence of Knight shift with H-eigen values lies closer and has almost the same 

slope as that of the experimental curve. But the slope of the curve using C-eigen values is slightly 

different from that of experimental curve. In this case also qualitative agreement has been obtained. In 

case of Aluminium only H-eigen values are available and temperature dependence curve has almost the 

same slope as that of the experimental curve. It is evident to   mention that the different values of K 

obtained by computation lie very close to experimental values and also the slope has similar inclination in 

both the cases viz. theoretical and experimental. 
 

Thus we observe that in spite of various approximations involved in the theoretical framework reasonable 

qualitative agreement has been obtained for the metals under investigation. From the above mentioned  
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facts it is apparent that the Knight shift and its temperature dependence have been reasonably predicted on 

the basis of the Harrison’s first principle technique in conjunction with Pake’s formalism.  
 

It is to be mentioned that the Ziman’s formalism for the electrical resistivity involves the square of the 

form factor within its integrand hence; it depends only on the magnitude of the form factor. In contrast, 

the Pake’s formalism for the Knight shift involves the form factor linearly within its integrand. Hence it 

depends both on the magnitude and the sign of the form factor. However, the electrical resistivity is very 

sensitive to the nature of the form factor especially in the region where the peak of the structure factor 

lies. Also it has a much larger magnitude. In contrast the Knight shift has a very small magnitude, hence 

the impact of the choice of various input parameters are not as much important as in the case of the 

electrical resistivity. 
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