Ab Hamis Ganie / BIBECHANA 9 (2013) 97-101 : BMHSS, p.97 (Online Publication: Nov., 2012)

BIBECHANA

A Multidisciplinary Journal of Science, Technology and Mathematics ISSN 2091-0762 (online) Journal homepage: http://nepjol.info/index.php/BIBECHANA

Almost boundedness and matrix transformation

Ab Hamid Ganie

Department of Mathematics, National Institute of Technology, Srinagar (India)- 190006. Email: ashamidg@rediffmail.com Article history: Received 25 September, 2012; Accepted 12 November, 2012

Abstract

The sequence space a_c^r have been defined and the various classes of infinite matrices have been characterized by Aydin and Başar, (see, [1]), where $1 \le p \le \infty$. In this paper we characterize the classes $(a_c^r: f_{\infty})$, $(a_c^r: f)$ and $(a_c^r: f_0)$, where f_{∞} , f and f_0 denote respectively the spaces of almost bounded sequences, almost convergent sequences and almost convergent null sequences.

Keywords: Sequence space of non-absolute type;, almost convergent sequences; β-duals and Matrix Transformations.

1. Introduction, Background and Preliminaries

A sequence space is defined to be a linear space with real or complex sequences. Throughout the paper \mathbb{N} , \mathbb{R} and \mathbb{C} denotes the set of non-negative integers, the set of real numbers and the set of complex numbers, respectively.

Let ω denote the space of all sequences (real or complex). Let X and Y be two non-empty subsets of ω . Let $A = (a_{nk})$, $(n, k \in \mathbb{N})$, be an infinite matrix of real or complex numbers. We write $(Ax)_n = A_n(x) = \sum_k a_{nk}x_k$. Then $Ax = \{A_n(x)\}$ is called the A-transform of x, whenever $A_n(x) = \sum_k a_{nk}x_k < \infty$ for all $n \in \mathbb{N}$. We write $\lim_n Ax = \lim_n A_n(x)$. If $x \in X$ implies $Ax \in Y$, we say that A-defines a matrix transformations from X into Y, denoted by $A: X \to Y$. By (X:Y), we mean the class of all matrices A such that $A: X \to Y$.

For a sequence space, the matrix domain X_A of an infinite matrix A is defined as

(1)
$$X_A = \{x = (x_k) \in \omega : Ax \in X\}$$

Let ℓ_{∞} and *c* be the Banach spaces of bounded and convergent sequences $x = \{x(n)\}_{n=0}^{\infty}$ with supremum norm $||x|| = sup_n |x(n)|$. Let *T* denote the shift operator on ω , that is, $Tx = \{x(n)\}_{n=1}^{\infty}$, $T^2x = \{x(n)\}_{n=2}^{\infty}$ and so on. A Banach limit *L* is a non-negative linear functional

on ℓ_{∞} such that *L* is invariant under the shift operator and L(e) = 1, where e = (1,1,...) (see, [2]), that is, a functional $L: \ell_{\infty} \to \mathbb{R}$ is called a Banach limit if

- (i) L is linear,
- (ii) $L(x) \ge 0$ if $x_n \ge 0$ for all n.
- (iii) L(x) = L(Tx) where T is shift operator on ω .
- (*iv*) L(e) = 1, where e = (1, 1, ...).

Since the Hahn-Banach norm preserving extension is not unique, there must be many Banach limits in the dual space of ℓ_{∞} , and usually different Banach limits have different values at the same element in ℓ_{∞} . However, there indeed exists sequences whose values of all Banach limits are same. If $x = \{x_n\}_{n=0}^{\infty} \in c$, where *c* is a Banach space of ℓ_{∞} consisting of convergent sequences, then $L(x) = \lim_n x_n$ is a trivial example. Besides this there also exists non-convergent sequences satisfying this property. For example $x = \{1, 0, 1, 0, ...\}$ the value of $L(x) = \frac{1}{2}$ is same for every Banach limit. Lorentz (see, [4]) called a sequence $x = \{x_n\}_{n=1}^{\infty}$ almost convergent if all Banach limits of x, L(x), are same, and this unique Banach limit is called *F*-lim of *x*. In his paper Lorentz proved the following criterion for almost convergent sequences.

A $x = \{x_n\}_{n=0}^{\infty} \in \ell_{\infty}$ is almost convergent with *F*-limit L(x) if and only if

 $\lim_{p\to\infty} t_{mn}(x) = L(x),$

where, $t_{mn}(x) = \frac{1}{p} \sum_{i=0}^{p-1} T^i x_n$, $(T^0 = 0)$, uniformly in $n \ge 0$.

The above limit can be rewritten in detail as

$$(\forall \varepsilon > 0), (\exists p_0)(\forall p > p_0)(\forall n) \left| \frac{x_n + \dots + x_{n+p-1}}{p} - L \right| < \varepsilon.$$

We denote the set of almost convergent sequences by f.

$$f = \{x \in l_{\infty} : \lim_{m \to m} t_{mn}(x) \text{ exists , uniformly in } n\}.$$

Nanda [6] has defined a new set of sequences f_{∞} as follows:

$$f_{\infty} = \{x \in l_{\infty} : \lim_{m \to \infty} |t_{mn}(x)| < \infty\}.$$

We call f_{∞} the set of all almost bounded sequences. The approach of constructing a new sequence space by means of matrix domain of a particular limitation method has been studied by several authors viz., (see, [1, 5, 7]).

Following (see, [1], [7]), the sequence space a_c^r is defined as the set of all sequences whose A^r -transform is in c, that is,

$$a_c^r = \left\{ x = (x_k) \in \omega : \lim_n \frac{1}{n+1} \sum_{k=0}^n (1+r^k) x_k \text{ exists} \right\}$$

where ,
$$a_{nk}^{r} = \begin{cases} \frac{1+r^{k}}{n+1} , & 0 \le k \le n \\ 0 , & k > n. \end{cases}$$

With the notation of (1) that, $a_c^r = (c)_{A^r}$.

2. Main Results

Define the sequence $y = (y_k(r))$ which will be used, by the A^r -transform of a sequence $x = (x_k)$, that is,

(2)
$$y_k(r) = \sum_{j=0}^k \frac{1+r^j}{k+1} x_j$$
; for $k \in \mathbb{N}$.

For brevity in notation, we write

$$t_{mn}(Ax) = \frac{1}{m+1} \sum_{j=0}^{m} A_{n+i}(x) = \sum_{k} a(n,k,m) x_{k}$$

where, $a(n,k,m) = \frac{1}{m+1} \sum_{j=0}^{m} a_{n+j,k}$; $(n,k,m \in \mathbb{N})$

Also,
$$\tilde{a}(n,k,m) = \Delta \left[\frac{a(n,k,m)}{1+r^k} \right] (k+1) = \left[\frac{a(n,k,m)}{1+r^k} - \frac{a(n,k+1,m)}{1+r^{k+1}} \right] (k+1)$$

We denote by X^{β} , the β -deal of a sequence space X and mean the set of all the sequences $x = (x_k)$ such that $xy = (x_k y_k) \in cs$ for all $y = (y_k) \in X$. Now, we give the following lemmas which will be needed in proving the main Theorems.

Lemma 2.1[1]: Define the sets $D_1(p)$ and $D_2(p)$ as follows

$$D_{1}^{r} = \left\{ a = (a_{k}) \in \omega : \sum_{k} \left| \Delta \left(\frac{a_{k}}{1 + r^{k}} \right) (k+1) \right| < \infty \right\}$$
$$D_{2}^{r} = \left\{ a = (a_{k}) \in \omega : \left(\frac{a_{k}}{1 + r^{k}} \right) \in cs \right\}$$

where,

$$\Delta\left(\frac{a_k}{1+r^k}\right) = \frac{a_k}{1+r^k} - \frac{a_k}{1+r^{k+1}}$$

Then,

Lemma 2.2 [5]: $f \subset f_{\infty}$

Theorem 2.1: $A \in (a_c^r : f_\infty)$ if and only if

 $\left[a_{c}^{r}\right]^{\beta} = D_{1}^{r} \bigcap D_{2}^{r}$

(3)
$$\sup_{n,m\in\mathbb{N}}\sum_{k}\left|\tilde{a}(n,k,m)\right| < \infty$$

and

(4)
$$\left\{\frac{a_{nk}}{1+r^k}\right\}_{k\in\mathbb{N}}\in cs\,,\,\text{for all }n\in\mathbb{N}$$

Proof: Sufficiency: Suppose the conditions (3) & (4) holds and $x \in a_c^r$. Then $\{a_{n,k}\}_{k \in \mathbb{N}} \in [a_c^r]^\beta$ for every $n \in \mathbb{N}$, the *A*-transform of *x* exists. Since $x \in a_c^r$, by hypothesis, and $a_c^r \cong c$ (see,[1]), we have $y \in c$. Thus, we can find K > 0 such that $\sup_{k \in \mathbb{N}} |y_k| < K$.

$$\left| t_{mn}(Ax) \right| = \left| \sum_{k} a(n,k,m) x_{k} \right| = \left| \sum_{k} \tilde{a}(n,k,m) y_{k} \right|$$
$$\leq \sum_{k} \left| \tilde{a}(n,k,m) \right| \left| y_{k} \right| \leq K \sum_{k} \left| \tilde{a}(n,k,m) \right|$$

Taking sup on both sides, we get $Ax \in f_{\infty}$ for every $x \in a_c^r$.

Necessity: Suppose that $A \in (a_c^r : f_\infty)$. Then Ax exists for every $x \in a_c^r$ and this implies that $\{a_{n,k}\}_{k\in\mathbb{N}} \in [a_c^r]^\beta$ for every $n \in \mathbb{N}$, the necessity of (4) is immediate. Now, $\sum_k a(n,k,m)x_k$ exists for each m, n and $x \in a_c^r$, the sequences $\{a(n,k,m)\}_{k\in\mathbb{N}}$ define the continuous linear functionals $\psi_{nn}(x)$ on a_c^r by

$$\psi_{mn}(x) = \sum_{k} a(n,k,m) x_{k} \quad ; \ (n,k,m \in \mathbb{N}) \, .$$

Since a_c^r and *c* are norm isomorphic (see [1],), it should follow with (2) that $\|\psi_{mn}(x)\| = \|\tilde{a}(n,k,m)\|$ holds for every $k \in \mathbb{N}$. This implies that the functionals defined by ψ_{mn} on a_c^r are point wise bounded, so by uniform bounded principle, there exists M > 0 such that

$$\|\psi_{mn}(x)\| \leq M$$
 for every $m, n \in \mathbb{N}$.

Thus we conclude that

$$\sup_{m,n} \left| \psi_{mn}(x) \right| = \sup_{m,n} \left| \sum_{k} a(n,k,m) x_{k} \right| = \sup_{m,n} \left| \sum_{k} \tilde{a}(n,k,m) y_{k} \right| < M$$

This implies that $\sup_{n,m\in\mathbb{N}}\sum_{k} |\tilde{a}(n,k,m)| < \infty$, which shows the necessity of the condition (3) and the proof of

(i) is complete. \Box

Theorem 2.2 : $A \in (a_c^r : f)$ if and only if (3),(4) and

(5) $\lim_{m \to \infty} \tilde{a}(n,k,m) = \beta_k$, uniformly in *n*, and for each $k \in \mathbb{N}$.

(6)
$$\lim_{m} \sum \left| \tilde{a}(n,k,m) - \beta_k \right| = 0, \text{ uniformly in } n.$$

Proof: Sufficiency: Suppose that the conditions (3), (4), (5) and (6) hold and $x \in a_c^r$. Then Ax exists and at this stage, we observe with the help of (5) & (6) that

$$\sum_{j=0}^{k} \left| \beta_{j} \right| = \sup_{m,n} \sum_{j} \left| \tilde{a}(n,j,m) \right| < \infty$$

holds for every k. This gives that $(\beta_k) \in l_1$. Since $x \in a_c^r$ by hypothesis and $a_c^r \cong c$ (see,[1]), we have $y \in c$. Therefore, we can easily see that $(\beta_k y_k) \in l_1$ for each $y \in c$ and also there exists K > 0 such that $\sup_k |y_k| < K$. Now for $\varepsilon > 0$, choose a fixed $k_0 \in \mathbb{N}$, there is some $m_0 \in \mathbb{N}$ such that

$$\left|\sum_{k=0}^{k_0} \left\langle \tilde{a}(n,k,m) - \beta_k \right\rangle y_k \right| < \frac{\varepsilon}{2}$$

for every $m \ge m_0$ and $k_0 \in \mathbb{N}$.

Also by (6), there is some $m_1 \in \mathbb{N}$, such that

$$\sum_{k=k_0+1}^{\infty} \left| \tilde{a}(n,k,m) - \beta_k \right| < \frac{\varepsilon}{2}$$

for every $m \ge m_1$ uniformly in *n*. Thus, we have

$$\begin{aligned} \left| \frac{1}{m+1} \sum_{j=0}^{m} (Ax)_{n+j} - \sum_{k} \beta_{k} y_{k} \right| &= \left| \sum_{k} \left\langle \tilde{a}(n,k,m) - \beta_{k} \right\rangle y_{k} \right| \\ &\leq \left| \sum_{k=0}^{k_{0}} \left\langle \tilde{a}(n,k,m) - \beta_{k} \right\rangle y_{k} \right| + \left| \sum_{k=k_{0}+1}^{\infty} \left| \left\langle \tilde{a}(n,k,m) - \beta_{k} \right\rangle y_{k} \right| \\ &< \frac{\varepsilon}{2} + \sum_{k=k_{0}+1}^{\infty} \left| \left\langle \tilde{a}(n,k,m) - \beta_{k} \right\rangle \right| |y_{k}| \\ &< \frac{\varepsilon}{2} + K \frac{\varepsilon}{2K} = \varepsilon \end{aligned}$$

for all sufficiently large m , uniformly in n. Hence, $Ax \in f$, which proves sufficiency.

Necessity: Suppose that $A \in (a_c^r : f)$. Then, since $f \subset f_\infty$ (by Lemma 2.2), the necessities of (3) and (4) are immediately obtained from Theorem 2.1. To prove the necessity of (5), consider the sequence $b^{(k)}(r) = (b_n^{(k)}(r))$ for every $k \in \mathbb{N}$, where

$$b_n^{(k)}(r) = \begin{cases} (-1)^{n-k} \frac{1+k}{1+r^k} & , & k \le n \le k+1 \\ 0 & , & 0 \le n < k \text{ or } n > k+1 \end{cases}$$

Since Ax exists and is in f for each $x \in a_c^r$, one can easily see that

$$Ab^{(k)}(r) = \left\{ \Delta\left(\frac{a_{nk}}{1+r^k}\right)(k+1) \right\}_{n \in \mathbb{N}} \in f \text{ for all } k \in \mathbb{N} \text{ ,which proves the necessity of (6). Similarly}$$

taking $x = e \in a_c^r$, we shall get

$$Ax = \left\{ \sum_{k} \Delta \left(\frac{a_{nk}}{1+r^{k}} \right) (k+1) \right\}_{n \in \mathbb{N}} \in f \text{, which proves the necessity of (5). This concludes}$$

the proof.

Note that if we replace f by f_0 , then Theorem 2.2 is reduced to the following corollary:

Corollary: $A \in (a_c^r : f_0)$ if and only if (3),(4), (5) and (6) holds with $\beta_k = 0$ for each $k \in \mathbb{N}$.

References

- [1] C. Aydinand F. Başar, On the new sequence space of which include the spaces c_0 and c, Hokkaido Math. J., 33(2) (2004) 83-398.
- [2] S. Banach, Theories des operations linéaries, Warszawa, (1932).
- [3] C. G. Lascarides and I. J. Maddox, Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc., 68 (1970) 99-104.
- [4] G. G. Lorentz, A contribution to the theory of divergent series, Acta Math., 80(1948)167-190.
- [5] Mursaleen, Infinite matrices and almost convergent sequences, Southeast Asian Bulletin of Math. 19(1995) 45-48.
- [6] S. Nanda, Matrix transformations and almost boundedness, Glasnik Mat., 14(1979) 99-107.
- [7] N. A. Sheikh, and A. H. Ganie, On the λ -convergent sequence and almost convergence (to be appeared in Thai J. of Math, vol.3 (2012).