BIBECHANA

A Multidisciplinary Journal of Science, Technology and Mathematics
ISSN 2091-0762 (online)
Journal homepage: http://nepjol.info/index.php/BIBECHANA

Almost boundedness and matrix transformation

Ab Hamid Ganie
Department of Mathematics,
National Institute of Technology, Srinagar (India)- 190006.
Email: ashamidg@rediffmail.com
Article history: Received 25 September, 2012; Accepted 12 November, 2012

Abstract

The sequence space a_{c}^{r} have been defined and the various classes of infinite matrices have been characterized by Aydin and Başar, (see, [1]), where $1 \leq p \leq \infty$. In this paper we characterize the classes $\left(a_{c}^{r}: f_{\infty}\right),\left(a_{c}^{r}: f\right)$ and $\left(a_{c}^{r}: f_{0}\right)$, where f_{∞}, f and f_{0} denote respectively the spaces of almost bounded sequences, almost convergent sequences and almost convergent null sequences.

Keywords: Sequence space of non-absolute type; almost convergent sequences; $\boldsymbol{\beta}$-duals and Matrix

Transformations.

1. Introduction, Background and Preliminaries

A sequence space is defined to be a linear space with real or complex sequences. Throughout the paper \mathbb{N}, \mathbb{R} and \mathbb{C} denotes the set of non-negative integers, the set of real numbers and the set of complex numbers, respectively.
Let ω denote the space of all sequences (real or complex). Let X and Y be two non-empty subsets of ω. Let $A=\left(a_{n k}\right),(n, k \in \mathbb{N})$, be an infinite matrix of real or complex numbers. We write $(A x)_{n}=$ $A_{n}(x)=\sum_{k} a_{n k} x_{k}$. Then $A x=\left\{A_{n}(x)\right\}$ is called the A-transform of x, whenever $A_{n}(x)=$ $\sum_{k} a_{n k} x_{k}<\infty$ for all $n \in \mathbb{N}$. We write $\lim _{n} A x=\lim _{n} A_{n}(x)$. If $x \in X$ implies $A x \in Y$, we say that A-defines a matrix transformations from X into Y, denoted by $A: X \rightarrow Y$. By ($X: Y$), we mean the class of all matrices A such that $A: X \rightarrow Y$.
For a sequence space, the matrix domain X_{A} of an infinite matrix A is defined as

$$
\text { (1) } X_{A}=\left\{x=\left(x_{k}\right) \in \omega: A x \in X\right\}
$$

Let ℓ_{∞} and c be the Banach spaces of bounded and convergent sequences $x=\{x(n)\}_{n=0}^{\infty}$ with supremum norm $\|x\|=\sup _{n}|x(n)|$. Let T denote the shift operator on ω, that is, $T x=\{x(n)\}_{n=1}^{\infty}$, $T^{2} x=\{x(n)\}_{n=2}^{\infty}$ and so on. A Banach limit L is a non-negative linear functional
on ℓ_{∞} such that L is invariant under the shift operator and $L(e)=1$, where $e=(1,1, \ldots)$ (see, [2]), that is, a functional $L: \ell_{\infty} \rightarrow \mathbb{R}$ is called a Banach limit if
(i) L is linear,
(ii) $\quad L(x) \geq 0$ if $x_{n} \geq 0$ for all n.
(iii) $L(x)=L(T x)$ where T is shift operator on ω.
(iv) $\quad L(e)=1$, where $e=(1,1, \ldots)$.

Since the Hahn-Banach norm preserving extension is not unique, there must be many Banach limits in the dual space of ℓ_{∞}, and usually different Banach limits have different values at the same element in ℓ_{∞}. However, there indeed exists sequences whose values of all Banach limits are same. If $x=$ $\left\{x_{n}\right\}_{n=0}^{\infty} \in c$, where c is a Banach space of ℓ_{∞} consisting of convergent sequences, then $L(x)=\lim _{n} x_{n}$ is a trivial example. Besides this there also exists non-convergent sequences satisfying this property. For example $x=\{1,0,1,0, \ldots\}$ the value of $L(x)=\frac{1}{2}$ is same for every Banach limit. Lorentz (see, [4]) called a sequence $x=\left\{x_{n}\right\}_{n=1}^{\infty}$ almost convergent if all Banach limits of $x, L(x)$, are same, and this unique Banach limit is called F-lim of x. In his paper Lorentz proved the following criterion for almost convergent sequences.
A $x=\left\{x_{n}\right\}_{n=0}^{\infty} \in \ell_{\infty}$ is almost convergent with F-limit $L(x)$ if and only if

$$
\lim _{p \rightarrow \infty} t_{m n}(x)=L(x)
$$

where, $t_{m n}(x)=\frac{1}{p} \sum_{i=0}^{p-1} T^{i} x_{n},\left(T^{0}=0\right)$, uniformly in $n \geq 0$.
The above limit can be rewritten in detail as

$$
(\forall \varepsilon>0),\left(\exists p_{0}\right)\left(\forall p>p_{0}\right)(\forall n)\left|\frac{x_{n}+\cdots+x_{n+p-1}}{p}-L\right|<\varepsilon .
$$

We denote the set of almost convergent sequences by f.

$$
f=\left\{x \in l_{\infty}: \lim _{m} t_{m n}(x) \text { exists, uniformly in } n\right\} .
$$

Nanda [6] has defined a new set of sequences f_{∞} as follows:

$$
f_{\infty}=\left\{x \in l_{\infty}: \lim _{m}\left|t_{m n}(x)\right|<\infty\right\} .
$$

We call f_{∞} the set of all almost bounded sequences. The approach of constructing a new sequence space by means of matrix domain of a particular limitation method has been studied by several authors viz., (see, $[1,5,7]$).
Following (see, [1], [7]), the sequence space a_{c}^{r} is defined as the set of all sequences whose A^{r}-transform is in c, that is,

$$
a_{c}^{r}=\left\{x=\left(x_{k}\right) \in \omega: \lim _{n} \frac{1}{n+1} \sum_{k=0}^{n}\left(1+r^{k}\right) x_{k} \text { exists }\right\}
$$

Ab Hamis Ganie / BIBECHANA 9 (2013) 97-102 : BMHSS, p. 99 (Online Publication: Nov., 2012)
where, $a_{n k}^{r}=\left\{\begin{array}{cl}\frac{1+r^{k}}{n+1}, & 0 \leq k \leq n, \\ 0, & k>n .\end{array}\right.$
With the notation of (1) that, $a_{c}^{r}=(c)_{A^{r}}$.

2. Main Results

Define the sequence $y=\left(y_{k}(r)\right)$ which will be used, by the A^{r}-transform of a sequence $x=\left(x_{k}\right)$, that is,

$$
\begin{equation*}
y_{k}(r)=\sum_{j=0}^{k} \frac{1+r^{j}}{k+1} x_{j} ; \text { for } k \in \mathbb{N} . \tag{2}
\end{equation*}
$$

For brevity in notation, we write

$$
t_{m n}(A x)=\frac{1}{m+1} \sum_{j=0}^{m} A_{n+i}(x)=\sum_{k} a(n, k, m) x_{k}
$$

where, $a(n, k, m)=\frac{1}{m+1} \sum_{j=0}^{m} a_{n+j, k} \quad ;(n, k, m \in \mathbb{N})$
Also , $\quad \tilde{a}(n, k, m)=\Delta\left[\frac{a(n, k, m)}{1+r^{k}}\right](k+1)=\left[\frac{a(n, k, m)}{1+r^{k}}-\frac{a(n, k+1, m)}{1+r^{k+1}}\right](k+1)$
We denote by X^{β}, the β-deal of a sequence space X and mean the set of all the sequences $x=\left(x_{k}\right)$ such that $x y=\left(x_{k} y_{k}\right) \in c s$ for all $y=\left(y_{k}\right) \in X$. Now, we give the following lemmas which will be needed in proving the main Theorems.
Lemma 2.1[1]: Define the sets $D_{1}(p)$ and $D_{2}(p)$ as follows

$$
\begin{aligned}
& D_{1}^{r}=\left\{a=\left(a_{k}\right) \in \omega: \sum_{k}\left|\Delta\left(\frac{a_{k}}{1+r^{k}}\right)(k+1)\right|<\infty\right\} \\
& D_{2}^{r}=\left\{a=\left(a_{k}\right) \in \omega:\left(\frac{a_{k}}{1+r^{k}}\right) \in c s\right\}
\end{aligned}
$$

where,

$$
\Delta\left(\frac{a_{k}}{1+r^{k}}\right)=\frac{a_{k}}{1+r^{k}}-\frac{a_{k}}{1+r^{k+1}}
$$

Then,

$$
\left[a_{c}^{r}\right]^{\beta}=D_{1}^{r} \bigcap D_{2}^{r}
$$

Lemma 2.2 [5]: $f \subset f_{\infty}$
Theorem 2.1: $A \in\left(a_{c}^{r}: f_{\infty}\right)$ if and only if

$$
\begin{equation*}
\sup _{n, m \in \mathbb{N}} \sum_{k}|\tilde{a}(n, k, m)|<\infty \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\frac{a_{n k}}{1+r^{k}}\right\}_{k \in \mathbb{N}} \in c s, \text { for all } n \in \mathbb{N} \tag{4}
\end{equation*}
$$

Proof: Sufficiency: Suppose the conditions (3) \& (4) holds and $x \in a_{c}^{r}$. Then $\left\{a_{n, k}\right\}_{k \in \mathbb{N}} \in\left[a_{c}^{r}\right]^{\beta}$ for every $n \in \mathbb{N}$, the A-transform of x exists. Since $x \in a_{c}^{r}$, by hypothesis, and $a_{c}^{r} \cong c$ (see,[1]), we have $y \in c$. Thus, we can find $K>0$ such that $\sup _{k}\left|y_{k}\right|<K$.

$$
\begin{aligned}
&\left|t_{m n}(A x)\right|=\left|\sum_{k} a(n, k, m) x_{k}\right|=\left|\sum_{k} \tilde{a}(n, k, m) y_{k}\right| \\
& \leq \sum_{k}|\tilde{a}(n, k, m)|\left|y_{k}\right| \leq K \sum_{k}|\tilde{a}(n, k, m)|
\end{aligned}
$$

Taking sup on both sides, we get $A x \in f_{\infty}$ for every $\quad x \in a_{c}^{r}$.

Necessity: Suppose that $A \in\left(a_{c}^{r}: f_{\infty}\right)$. Then $A x$ exists for every $x \in a_{c}^{r}$ and this implies that $\left\{a_{n, k}\right\}_{k \in \mathbb{N}} \in\left[a_{c}^{r}\right]^{\beta}$ for every $n \in \mathbb{N}$, the necessity of (4) is immediate. Now, $\sum_{k} a(n, k, m) x_{k}$ exists for each m, n and $x \in a_{c}^{r}$, the sequences $\{a(n, k, m)\}_{k \in \mathbb{N}}$ define the continuous linear functionals $\psi_{m n}(x)$ on a_{c}^{r} by

$$
\psi_{m n}(x)=\sum_{k} a(n, k, m) x_{k} \quad ;(n, k, m \in \mathbb{N}) .
$$

Since a_{c}^{r} and c are norm isomorphic (see [1],), it should follow with (2) that $\left\|\psi_{m n}(x)\right\|=\|\tilde{a}(n, k, m)\|$ holds for every $k \in \mathbb{N}$. This implies that the functionals defined by $\psi_{m n}$ on a_{c}^{r} are point wise bounded, so by uniform bounded principle, there exists $M>0$ such that

$$
\left\|\psi_{m n}(x)\right\| \leq M \text { for every } m, n \in \mathbb{N}
$$

Thus we conclude that

$$
\sup _{m, n}\left|\psi_{m n}(x)\right|=\sup _{m, n}\left|\sum_{k} a(n, k, m) x_{k}\right|=\sup _{m, n}\left|\sum_{k} \tilde{a}(n, k, m) y_{k}\right|<M
$$

This implies that $\sup _{n, m \in \mathbb{N}} \sum_{k}|\tilde{a}(n, k, m)|<\infty$, which shows the necessity of the condition (3) and the proof of (i) is complete.

Theorem 2.2: $A \in\left(a_{c}^{r}: f\right)$ if and only if (3),(4) and
(5) $\lim _{m} \tilde{a}(n, k, m)=\beta_{k}$, uniformly in n, and for each $k \in \mathbb{N}$.
(6) $\quad \lim _{m} \sum\left|\tilde{a}(n, k, m)-\beta_{k}\right|=0$, uniformly in n.

Proof: Sufficiency: Suppose that the conditions (3), (4), (5) and (6) hold and $x \in a_{c}^{r}$. Then $A x$ exists and at this stage, we observe with the help of (5) \& (6) that

$$
\sum_{j=0}^{k}\left|\beta_{j}\right|=\sup _{m, n} \sum_{j}|\tilde{a}(n, j, m)|<\infty
$$

holds for every k.This gives that $\left(\beta_{k}\right) \in l_{1}$. Since $x \in a_{c}^{r}$ by hypothesis and $a_{c}^{r} \cong c($ see, [1]), we have $y \in c$.Therefore, we can easily see that $\left(\beta_{k} y_{k}\right) \in l_{1}$ for each $y \in c$ and also there exists $K>0$ such that $\sup _{k}\left|y_{k}\right|<K$. Now for $\varepsilon>0$, choose a fixed $k_{0} \in \mathbb{N}$, there is some $m_{0} \in \mathbb{N}$ such that

$$
\left|\sum_{k=0}^{k_{0}}\left\langle\tilde{a}(n, k, m)-\beta_{k}\right\rangle y_{k}\right|<\frac{\varepsilon}{2}
$$

for every $m \geq m_{0}$ and $k_{0} \in \mathbb{N}$.
Also by (6) , there is some $m_{1} \in \mathbb{N}$, such that

$$
\sum_{k=k_{0}+1}^{\infty}\left|\tilde{a}(n, k, m)-\beta_{k}\right|<\frac{\varepsilon}{2}
$$

for every $m \geq m_{1}$ uniformly in n. Thus, we have

$$
\begin{aligned}
\left\lvert\, \frac{1}{m+1} \sum_{j=0}^{m}(A x)_{n+j}\right. & -\sum_{k} \beta_{k} y_{k}\left|=\left|\sum_{k}\left\langle\tilde{a}(n, k, m)-\beta_{k}\right\rangle y_{k}\right|\right. \\
& \leq\left|\sum_{k=0}^{k_{0}}\left\langle\tilde{a}(n, k, m)-\beta_{k}\right\rangle y_{k}\right|+\sum_{k=k_{0}+1}^{\infty}\left|\left\langle\tilde{a}(n, k, m)-\beta_{k}\right\rangle y_{k}\right| \\
& <\frac{\varepsilon}{2}+\sum_{k=k_{0}+1}^{\infty}\left|\left\langle\tilde{a}(n, k, m)-\beta_{k}\right\rangle\right|\left|y_{k}\right| \\
& <\frac{\varepsilon}{2}+K \frac{\varepsilon}{2 K}=\varepsilon
\end{aligned}
$$

for all sufficiently large m, uniformly in n. Hence, $A x \in f$, which proves sufficiency.
Necessity: Suppose that $A \in\left(a_{c}^{r}: f\right)$. Then, since $f \subset f_{\infty}$ (by Lemma 2.2), the necessities of (3) and (4) are immediately obtained from Theorem 2.1 . To prove the necessity of (5), consider the sequence $b^{(k)}(r)=\left(b_{n}^{(k)}(r)\right)$ for every $k \in \mathbb{N}$, where

$$
b_{n}^{(k)}(r)=\left\{\begin{array}{cl}
(-1)^{n-k} \frac{1+k}{1+r^{k}} & , \quad k \leq n \leq k+1 \\
0 & , 0 \leq n<k \text { or } n>k+1
\end{array}\right.
$$

Since $A x$ exists and is in f for each $x \in a_{c}^{r}$, one can easily see that

$$
A b^{(k)}(r)=\left\{\Delta\left(\frac{a_{n k}}{1+r^{k}}\right)(k+1)\right\}_{n \in \mathbb{N}} \in f \text { for all } k \in \mathbb{N} \text {, which proves the necessity of (6). Similarly }
$$

taking $x=e \in a_{c}^{r}$, we shall get

$$
A x=\left\{\sum_{k} \Delta\left(\frac{a_{n k}}{1+r^{k}}\right)(k+1)\right\}_{n \in \mathbb{N}} \in f \text {, which proves the necessity of (5).This concludes }
$$

the proof.
Note that if we replace f by f_{0}, then Theorem 2.2 is reduced to the following corollary:
Corollary: $A \in\left(a_{c}^{r}: f_{0}\right)$ if and only if (3),(4), (5) and (6) holds with $\beta_{k}=0$ for each $k \in \mathbb{N}$.

References

[1] C. Aydinand F. Başar, On the new sequence space of which include the spaces c_{0} and c, Hokkaido Math. J., 33(2) (2004) 83-398.
[2] S. Banach, Theỏries des operations linẻaries, Warszawa, (1932).
[3] C. G. Lascarides and I. J. Maddox, Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc., 68 (1970) 99-104.
[4] G. G. Lorentz, A contribution to the theory of divergent series, Acta Math., 80(1948)167-190.
[5] Mursaleen, Infinite matrices and almost convergent sequences, Southeast Asian Bulletin of Math. 19(1995) 45-48.
[6] S. Nanda, Matrix transformations and almost boundedness, Glasnik Mat., 14(1979) 99-107.
[7] N. A. Sheikh, and A. H. Ganie, On the λ-convergent sequence and almost convergence (to be appeared in Thai J. of Math, vol. 3 (2012).

