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Abstract 
In the paper, the location of liberation points have been observed and triangular liberation points L4 and 

L5 are determined.  
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1. Introduction 

 

Two primaries the point masses, the bigger one is spherical and the second primary; (smaller primary) is a 

triaxial rigid body are moving around their centre of mass in circular orbits under the influence of their 

mutual gravitational attraction and a third body, influenced by the primaries but not influencing their 

motion moves in the plane defined by the two revolving primaries.   

If one body is triaxial and other is spherical then the triangular libration points in restricted problem of 

three bodies are infinitesimal or linearly stable.  

Leontovic [1] established a non-linear stability of the triangular libration point. Deprit  and  Palmore [2] 

established the family of short orbits originating at the equilateral triangular libration point. Deprit [2,3] 

studied geometrically the long periodic and short periodic obits  around L4 with the help of D'Alembert's 

series. Henrard [4]  discovered that the long periodic orbits at L4 doesn't evolve in a continuous way. And 

discontinuity appears not only at mass ratios but also at singular bifurcation points. Tuckness [6] has used 

all the stability criteria numerically and investigated the sensitivities of third body around L4 when it is 

given positional deviations away from L4 with a suitable condition. The above mentioned mathematicians 

studied the different aspects of stability of libration points with different approaches in circular restricted 

problem of three bodies.  

Here we have taken the bigger primary is a spherical and smaller as a triaxial rigid body under the same 

condition of Mc kanzie  and  Szebehely and  Tukness.  

 

2. Equation of Motion 

 

The equations of motion of the third body are:  
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Where r1,r2 are distances between first and second primary from third body respectively, and m1,m2 

are masses of the first and second primaries respectively.  
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a, b, c being semi-axes of triaxial rigid body and R is distance between the primaries. 

 

3. Location of Libration Points  

 

From equation (1) 
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Integrating w. r. t. t we get c2yx 22 −Ω=+
••

      (6) 

which is Jacobi's integral.  

Libration points are solutions of the equations 

,0,0. =
∂
Ω∂

=
∂
Ω∂

yx
 

we get,   
2

2

1

1 ,
r

y

y

r

r

y

y

r
=

∂

∂
=

∂

∂
 

or, 

( )( ) ( ) ( ) ( ) ( ) ( ) 2

7

2

21

5

2

21

3

2

3

1

2 1
2

15
1

2

2311
. yx

r
x

rr

x

r

x
x

x
+−

−
++−

−
−

+−
−

−−
−=

∂
Ω∂

µ
σσµ

µ
σσµµµµµ

η  

  

                           (1) 



 

R. R. Thapa and M. K. Raut. / BIBECHANA 9 (2013) 121-125 : BMHSS, p.123 (Online Publication:  Nov., 2012) 

 

 

( ) ( ) ( )







 −
+

−
−−

−
−=

∂
Ω∂ 2

7

2

21

5

2

21

3

2

3

1

2

2

15

2

3431
. y

rrrr
y

y

σσµσσµµµ
η   

 

4. Triangular Libration Points  

 

The triangular libration points are solutions of the equations:  
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Multiplying equation (7) by ( )1x +µ−  and subtracting the result from equation (8); we set.  
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Multiplying equation 8 by ( )µ−x and subtracting the result from equation (7)  

we get,  
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If we put 021 ==σσ then equations ( 9) and (10) become  
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Adding them,  

we get,   21 rr =          (11) 

Using equation 5, 

we get,   121 === ηrr  
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where 1,0,1,1 21 <<<+=+= βαβα rr  

Putting the values of yxrr ,,,, 21η in equations (9) and (11) We get, 
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From equation (12) 
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and from equation (13) 
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5. Conclusion 

 

The triaxial rigid body can be affected by analytical effect on the values of the critical mass. The libration 

points L4 & L5 are depending on µ , 21 ,σσ . 
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