BIBECHANA

A Multidisciplinary Journal of Science, Technology and Mathematics
ISSN 2091-0762 (online)
Journal homepage: http://nepjol.info/index.php/BIBECHANA

Approximation of a generalized Lipschitz class function by Euler Cesàro means of Fourier series

Binod Prasad Dhakal
Central Department of Education Mathematics
Tribhuvan University, Nepal
E-mail: binod_dhakal2004@yahoomail.com
Article history: Received 19 November, 2011; Accepted 27 November, 2012

Abstract

In this paper, I have taken product of two summability methods, Euler and Cesàro; and establish a new theorem on the degree of approximation of the function f belonging to $\mathrm{W}\left(\mathrm{L}^{\mathrm{p}}, \xi(\mathrm{t})\right)$ classes by Euler Cesàro method.

Key words and phrases: Degree of approximation; $(\mathbf{E}, 1)(\mathbf{C}, 1)$ Summability; Fourier series.

1. Definitions and Notations

$$
\begin{aligned}
& \text { A function } \mathrm{f}(\mathrm{x}) \in \operatorname{Lip} \alpha \text {, if } \\
& |\mathrm{f}(\mathrm{x}+\mathrm{t})-\mathrm{f}(\mathrm{x})|=\mathrm{O}\left(|\mathrm{t}|^{\alpha}\right) \text { for } 0<\alpha \leq 1 \text { and } \mathrm{f} \in \operatorname{Lip}(\alpha, \mathrm{p}) \text {, if } \\
& \left(\int_{0}^{2 \pi}|\mathrm{f}(\mathrm{x}+\mathrm{t})-\mathrm{f}(\mathrm{x})|^{\mathrm{p}} \mathrm{dx}\right)^{\frac{1}{\mathrm{p}}}=\mathrm{O}\left(|t|^{\alpha}\right), 0<\alpha \leq 1, \mathrm{p} \geq 1 .
\end{aligned}
$$

Given a positive increasing function $\xi(\mathrm{t}), \mathrm{p} \geq 1$,
$\mathrm{f}(\mathrm{x}) \in \operatorname{Lip}(\xi(\mathrm{t}), \mathrm{p})$, if

$$
\begin{align*}
& \left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{p} d x\right)^{\frac{1}{p}}=O(\xi(t)) \text { and } f \in W\left(L^{p}, \xi(t)\right) \text {, if } \\
& \left(\int_{0}^{2 \pi}\left|(f(x+t)-f(x)) \sin ^{\beta} x\right|^{p} d x\right)^{\frac{1}{p}}=O(\xi(t)),(\beta \geq 0) . \tag{1}
\end{align*}
$$

It is noted that, $\mathrm{W}\left(\mathrm{L}^{\mathrm{p}}, \xi(\mathrm{t})\right) \xrightarrow{\beta=0} \operatorname{Lip}(\xi(\mathrm{t}), \mathrm{p}) \xrightarrow{\xi(\mathrm{t})=\mathrm{t}^{\alpha}} \operatorname{Lip}(\alpha, \mathrm{p}) \xrightarrow{\mathrm{p} \rightarrow \infty} \operatorname{Lip} \alpha$ So, $\operatorname{Lip} \alpha \subseteq \operatorname{Lip}(\alpha, p) \subseteq \operatorname{Lip}(\xi(t), p) \subseteq W\left(L^{p}, \xi(t)\right)$ for $0<\alpha \leq 1$ and $p \geq 1$.

We define the norm $\left\|\|_{p}\right.$ by $\left.\quad\right\| f \|_{p}=\left\{\int_{0}^{2 \pi}|f(x)|^{p} d x\right\}^{\frac{1}{p}}, \quad p \geq 1$.
The degree of approximation $E_{n}(f)$ of function $f: R \rightarrow R$ is given by

$$
E_{n}(f)=\operatorname{Min}\left\|t_{n}-f\right\|_{p}
$$

Where t_{n} is trigonometric polynomial of degree n [2].
Let f be 2π periodic, integrable over $(-\pi, \pi)$ in the sense of Lebesgue and belonging to $W\left(L^{p}, \xi(t)\right)$ class, then its "Fourier series" is given by

$$
\begin{equation*}
f(t)=\frac{1}{2} a_{o}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) \tag{1}
\end{equation*}
$$

Let $\sum_{n=0}^{\infty} u_{n}$ be the infinite series whose nth partial sum is given by $S_{n}=\sum_{i=0}^{n} u_{i}$.
The Cesåro means ($C, 1$) of sequence $\left\{\mathrm{S}_{\mathrm{n}}\right\}$ is $\sigma_{\mathrm{n}}=\frac{1}{\mathrm{n}+1} \sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{S}_{\mathrm{k}}$.
If $\sigma_{n} \rightarrow S$, as $n \rightarrow \infty$ then sequence $\left\{S_{n}\right\}$ or the infinite series $\sum_{n=0}^{\infty} u_{n}$ is said to be summable by Cesåro means method ($\mathrm{C}, 1$) to S . It is denoted by

$$
\sigma_{n} \rightarrow \mathrm{~S}(\mathrm{C}, 1), \text { as } \mathrm{n} \rightarrow \infty[3] .
$$

The Euler means (E, 1) of sequence $\left\{\mathrm{S}_{\mathrm{n}}\right\}$ is $\mathrm{E}_{\mathrm{n}}^{1}=\frac{1}{2^{n}} \sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \mathrm{S}_{\mathrm{k}}$
If $E_{n}^{1} \rightarrow S$ as, $n \rightarrow \infty$ then sequence $\left\{S_{n}\right\}$ or infinite series $\sum_{n=0}^{\infty} u_{n}$ is said to be summable by Euler means method $(E, 1)$ to S. It is denoted by

$$
E_{n}^{1} \rightarrow S(E, 1) \text {, as } n \rightarrow \infty[4] .
$$

The E_{n}^{1} transformation of $\left\{\sigma_{n}\right\}$ is denoted by $\mathrm{t}_{\mathrm{n}} \mathrm{E}_{1}, \mathrm{C}_{1}$, which is $(\mathrm{E}, 1)(\mathrm{C}, 1)$ transformation of $\left\{\mathrm{S}_{\mathrm{n}}\right\}$ and defined as $\mathrm{t}_{\mathrm{n}}^{\mathrm{E}_{1}, \mathrm{C}_{1}}=\frac{1}{2^{\mathrm{n}}} \sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \sigma_{\mathrm{k}}=\frac{1}{2^{\mathrm{n}}} \sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \frac{1}{\mathrm{k}+1} \sum_{\mathrm{r}=\mathrm{o}}^{\mathrm{k}} \mathrm{S}_{\mathrm{r}}$.
If $\mathrm{t}_{\mathrm{n}}^{\mathrm{E}_{1}, \mathrm{C}_{1}} \rightarrow \mathrm{~S}$, as $\mathrm{n} \rightarrow \infty$ then sequence $\left\{\mathrm{S}_{\mathrm{n}}\right\}$ or infinite series $\sum_{\mathrm{n}=0}^{\infty} \mathrm{u}_{\mathrm{n}}$ is said to be summable by (E , 1) (C, 1) means method to S. It is denoted by

$$
\mathrm{t}_{\mathrm{n}}^{\mathrm{E}_{\mathrm{I}}, \mathrm{C}_{1}} \rightarrow \mathrm{~S}(\mathrm{E}, 1)(\mathrm{C}, 1), \quad \text { as } \mathrm{n} \rightarrow \infty
$$

We use following notations.

$$
\begin{align*}
& \phi(\mathrm{t})=\mathrm{f}(\mathrm{x}+\mathrm{t})+\mathrm{f}(\mathrm{x}-\mathrm{t})-2 \mathrm{f}(\mathrm{x}) \tag{2}\\
& \mathrm{N}_{\mathrm{n}}^{\mathrm{E}_{1}, \mathrm{C}_{1}}=\frac{1}{2^{\mathrm{n}+1} \pi} \sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \frac{\sin ^{2}(\mathrm{k}+1) \frac{\mathrm{t}}{2}}{(\mathrm{k}+1) \sin ^{2} \frac{\mathrm{t}}{2}} \tag{3}
\end{align*}
$$

2. Main Theorem

In present paper, the degree of approximation of a function $f \in W\left(L^{p}, \xi(t)\right)$ class by $(E, 1)(C, 1)$ means of a Fourier series has been determined in the following form:
Theorem: If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is 2π periodic, Lebesgue integrable function in $(-\pi, \pi)$ and is $\mathrm{W}\left(\mathrm{L}^{\mathrm{p}}, \xi(\mathrm{t})\right)$, then the degree of approximation of function f by $(E, 1)(C, 1)$ means of Fourier series (1) satisfies,

$$
\left\|\mathrm{t}_{\mathrm{n}}^{\mathrm{E}_{1}, \mathrm{C}_{1}}-\mathrm{f}\right\|_{\mathrm{p}}=\mathrm{O}\left((\mathrm{n}+1)^{\beta+\frac{1}{p}} \xi\left(\frac{1}{\mathrm{n}+1}\right)\right), \text { for } \mathrm{n}=1,2,3,4, \ldots \ldots \ldots .
$$

Provided $\xi(\mathrm{t})$ satisfy the following conditions;

$$
\begin{gather*}
\left\{\frac{\xi(\mathrm{t})}{\mathrm{t}}\right\} \text { is monotonic decreasing } \tag{4}\\
\left\{\int_{0}^{\frac{1}{n+1}}\left(\frac{\mathrm{t}|\phi(\mathrm{t})|}{\xi(\mathrm{t})}\right)^{\mathrm{p}} \sin ^{\beta \mathrm{p}} \mathrm{tdt}\right\}^{\frac{1}{\mathrm{p}}}=\mathrm{O}\left(\frac{1}{\mathrm{n}+1}\right) \\
\left\{\int_{\frac{1}{\mathrm{n}+1}}^{\pi}\left(\frac{\mathrm{t}^{-\delta}|\phi(\mathrm{t})|}{\xi(\mathrm{t})}\right)^{\mathrm{p}} \mathrm{dt}\right\}^{\frac{1}{\mathrm{p}}}=\mathrm{O}\left((\mathrm{n}+1)^{\delta}\right) \tag{6}
\end{gather*}
$$

where δ is an arbitrary number such that $\mathrm{q}(1-\delta)-1>0$, condition (5) and (6) hold uniformly in x .

3. Lemmas

We need the following Lemmas for the proof of our theorem.

Lemma 1: Let

$$
\begin{aligned}
\mathrm{N}_{\mathrm{n}}^{\mathrm{E}_{1}, \mathrm{C}_{1}}(\mathrm{t}) & =\frac{1}{2^{\mathrm{n}+1} \pi} \sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \frac{\sin ^{2}(\mathrm{k}+1) \frac{\mathrm{t}}{2}}{(\mathrm{k}+1) \sin ^{2} \frac{\mathrm{t}}{2}}, \text { then } \\
\mathrm{N}_{\mathrm{n}}^{\mathrm{E}_{1}, \mathrm{C}_{1}}(\mathrm{t}) & =\mathrm{O}(\mathrm{n}+1), \text { for } 0<\mathrm{t}<\frac{1}{\mathrm{n}+1} . \\
\mathrm{N}_{\mathrm{n}}^{\mathrm{E}_{1}, \mathrm{C}_{1}}(\mathrm{t}) & =\frac{1}{2^{\mathrm{n}+1} \pi} \sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \frac{\sin ^{2}(\mathrm{k}+1) \frac{\mathrm{t}}{2}}{(\mathrm{k}+1) \sin ^{2} \frac{\mathrm{t}}{2}} \\
& \leq \frac{1}{2^{\mathrm{n}+1} \pi} \sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \frac{(\mathrm{k}+1)^{2} \sin ^{2} \frac{\mathrm{t}}{2}}{(\mathrm{k}+1) \sin ^{2} \frac{\mathrm{t}}{2}} \\
& =\frac{1}{2^{\mathrm{n}+1} \pi} \sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}}(\mathrm{k}+1)
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{2^{n+1} \pi}\left[\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{k}\binom{\mathrm{n}}{\mathrm{k}}+\sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}}\right] \\
& =\frac{1}{2^{\mathrm{n}+1} \pi}\left[\mathrm{n} 2^{\mathrm{n}-1}+2^{\mathrm{n}}\right] \\
& =\left(\frac{\mathrm{n}+2}{4 \pi}\right) \\
& \leq \frac{(\mathrm{n}+1)}{2 \pi} \\
& =\mathrm{O}(\mathrm{n}+1) \tag{7}
\end{align*}
$$

Lemma 2: Let $\mathrm{N}_{\mathrm{n}}^{\mathrm{E}_{1}, \mathrm{C}_{1}}$ be given as Lemma I, then

$$
\begin{align*}
& \mathrm{N}_{\mathrm{n}}^{\mathrm{E}_{1}, C_{1}}(\mathrm{t})=\mathrm{O}\left(\frac{1}{(\mathrm{n}+1) \mathrm{t}^{2}}\right), \text { for } \frac{1}{\mathrm{n}+1}<\mathrm{t}<\pi \\
&\left|\mathrm{N}_{\mathrm{n}}^{\mathrm{E}_{1}, C_{1}}(\mathrm{t})\right| \leq \frac{1}{2^{\mathrm{n}+1} \pi} \sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \frac{\left.\sin ^{2}(\mathrm{k}+1) \frac{\mathrm{t}}{2} \right\rvert\,}{(\mathrm{k}+1)\left|\sin ^{2} \frac{\mathrm{t}}{2}\right|} \\
&=\frac{1}{2^{\mathrm{n}+1} \pi} \sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \frac{|1-\cos (\mathrm{k}+1) \mathrm{t}|}{2(\mathrm{k}+1)\left|\sin ^{2} \frac{\mathrm{t}}{2}\right|} \\
& \leq \frac{1}{2^{\mathrm{n}+1} \pi} \sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \frac{1}{(\mathrm{k}+1)\left|\sin ^{2} \frac{\mathrm{t}}{2}\right|} \\
&=\frac{\pi}{2^{\mathrm{n}+1} \mathrm{t}^{2}} \sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \frac{1}{(\mathrm{k}+1)} \\
&=\frac{\pi}{2^{\mathrm{n}+1} \mathrm{t}^{2}}\left(\frac{2^{\mathrm{n}+1}-1}{\mathrm{n}+1}\right) \\
&=\frac{\pi}{(\mathrm{n}+1) \mathrm{t}^{2}}\left(1-\frac{1}{\left.2^{\mathrm{n}+1}\right)}\right. \\
& \leq \frac{\pi}{(\mathrm{n}+1) \mathrm{t}^{2}} \\
&=\mathrm{O}\left(\frac{1}{(\mathrm{n}+1) \mathrm{t}^{2}}\right) \tag{8}
\end{align*}
$$

4. Proof of the Theorem

Following Titchmarsh [5], $\mathrm{n}^{\text {th }}$ partial sum of Fourier series (1) at $\mathrm{t}=\mathrm{x}$ is given by
$S_{n}(x)-f(x)=\frac{1}{2 \pi} \int_{0}^{\pi} \phi(t) \frac{\sin \left(n+\frac{t}{2}\right) t}{\sin \frac{t}{2}} d t$.
$(C, 1)$ transform of S_{n} i.e. σ_{n} is given by

$$
\begin{aligned}
& \frac{1}{\mathrm{n}+1} \sum_{\mathrm{k}=0}^{\mathrm{n}}\left(\mathrm{~S}_{\mathrm{k}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right)=\frac{1}{2(\mathrm{n}+1) \pi} \int_{0}^{\pi} \frac{\phi(\mathrm{t})}{\sin \frac{\mathrm{t}}{2}} \sum_{\mathrm{k}=0}^{\mathrm{n}} \sin \left(\mathrm{k}+\frac{\mathrm{t}}{2}\right) \mathrm{t} \mathrm{dt} \\
& \sigma_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x})=\frac{1}{2(\mathrm{n}+1) \pi} \int_{0}^{\pi} \phi(\mathrm{t}) \frac{\sin ^{2}(\mathrm{n}+1) \frac{\mathrm{t}}{2}}{\sin ^{2} \frac{\mathrm{t}}{2}} \mathrm{dt}
\end{aligned}
$$

Similarly, ($\mathrm{E}, 1$) transform of on i.e. $\mathrm{t}_{\mathrm{n}}^{\mathrm{E}_{1}, \mathrm{C}_{1}}$ is

$$
\begin{align*}
& \frac{1}{2^{n}} \sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}}\left(\sigma_{\mathrm{k}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right)=\frac{1}{2^{\mathrm{n}+1} \pi} \int_{0}^{\pi} \phi(\mathrm{t}) \sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \frac{\sin ^{2}(\mathrm{k}+1) \frac{\mathrm{t}}{2}}{(\mathrm{k}+1) \sin ^{2} \frac{\mathrm{t}}{2}} \mathrm{dt} \\
& \mathrm{t}_{\mathrm{n}}^{\mathrm{E}_{1}, \mathrm{C}_{1}}(\mathrm{x})-\mathrm{f}(\mathrm{x})=\int_{0}^{\pi} \phi(\mathrm{t}) \frac{1}{2^{\mathrm{n}+1} \pi} \sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \frac{\sin ^{2}(\mathrm{k}+1) \frac{\mathrm{t}}{2}}{(\mathrm{k}+1) \sin ^{2} \frac{\mathrm{t}}{2}} \mathrm{dt} \\
& =\int_{0}^{\pi} \phi(t) N_{n}^{E_{1}, C_{1}}(t) d t \\
& =\int_{0}^{\frac{1}{n+1}} \phi(t) N_{n}^{\mathrm{E}_{1}, \mathrm{C}_{1}}(\mathrm{t}) \mathrm{dt}+\int_{\frac{1}{n+1}}^{\pi} \phi(\mathrm{t}) N_{\mathrm{n}}^{\mathrm{E}_{1}, \mathrm{C}_{1}}(\mathrm{t}) d \mathrm{t} \\
& =I_{1}+I_{2}, \text { say } . \tag{9}
\end{align*}
$$

For \mathbf{I}_{1}, applying Holder inequality and fact that $\phi(\mathrm{t}) \in \mathrm{W}\left(\mathrm{L}^{\mathrm{p}}, \xi(\mathrm{t})\right)$, we have

$$
\begin{aligned}
& \left|\mathrm{I}_{1}\right| \leq\left\{\int_{0}^{\frac{1}{n+1}}\left(\frac{\mathrm{t}|\phi(\mathrm{t})|}{\xi(\mathrm{t})} \sin ^{\beta} \mathrm{t}\right)^{\mathrm{p}} \mathrm{dt}\right\}^{\frac{1}{\mathrm{p}}}\left\{\int_{0}^{\frac{1}{n+1}}\left(\frac{\xi(\mathrm{t})}{\mathrm{t} \sin ^{\beta} \mathrm{t}} \mathrm{~N}_{\mathrm{n}}^{\mathrm{E}_{1}, \mathrm{C}_{1}}(\mathrm{t})\right)^{\mathrm{q}} \mathrm{dt}\right\}^{\frac{1}{q}} \\
& =O\left(\frac{1}{n+1}\right)\left\{\int_{0}^{\frac{1}{n+1}}\left(\frac{\xi(\mathrm{t})(\mathrm{n}+1)}{\mathrm{t}^{\beta+1}}\right)^{\mathrm{q}} \mathrm{dt}\right\}^{\frac{1}{q}} \\
& =\mathrm{O}\left(\xi\left(\frac{1}{n+1}\right)\right)\left\{\int_{\varepsilon}^{\frac{1}{n+1}} \mathrm{t}^{-\mathrm{q}(\beta+1)} \mathrm{dt}\right\}^{\frac{1}{q}} \text {, by the Mean Value Theorem, where } 0<\varepsilon<\frac{1}{\mathrm{n}+1} . \\
& =\mathrm{O}\left(\xi\left(\frac{1}{\mathrm{n}+1}\right)\right)\left\{\left(\frac{\mathrm{t}^{-\mathrm{q}(\beta+1)+1}}{-\mathrm{q}(\beta+1)+1}\right)_{\varepsilon}^{\frac{1}{n+1}}\right\}^{\frac{1}{q}} \\
& =\mathrm{O}\left(\xi\left(\frac{1}{\mathrm{n}+1}\right)\right)\left\{(\mathrm{n}+1)^{(\beta+1) \mathrm{q}-1}\right\}^{\frac{1}{9}}
\end{aligned}
$$

$$
\begin{align*}
& =O\left((n+1)^{\beta+1-\frac{1}{q}} \xi\left(\frac{1}{n+1}\right)\right) \\
& =O\left((n+1)^{\beta+\frac{1}{p}} \xi\left(\frac{1}{n+1}\right)\right) . \tag{10}
\end{align*}
$$

For $\mathbf{I}_{\mathbf{2}}$, applying Holder's inequality and taking δ as an arbitrary number such that $q(1-\delta)-1>0$, we have

$$
\begin{align*}
\left|I_{2}\right| & \leq\left\{\int_{\frac{1}{n+1}}^{\pi}\left(\frac{t^{-\delta}|\phi(t)|}{\xi(t)} \sin ^{\beta} t\right)^{p} d t\right\}^{\frac{1}{p}}\left\{\int_{\frac{1}{n+1}}^{\pi}\left(\frac{\xi(t) N_{n}(t)}{t^{-\delta} \sin ^{\beta} t}\right)^{q} d t\right\}^{\frac{1}{q}} \\
& =\left\{\int_{\frac{1}{n+1}}^{\pi}\left(\frac{t^{-\delta}|\phi(t)|}{\xi(t)}\right)^{p} d t\right\}^{\frac{1}{p}}\left\{\int_{\frac{1}{n+1}}^{\pi}\left(\frac{\xi(t)}{t^{-\delta+\beta+2}(n+1)}\right)^{q} d t\right\}^{\frac{1}{q}} \\
& =O\left((n+1)^{\delta-1}\right)\left\{\int_{n+1}^{\frac{1}{n}}\left(\frac{\xi\left(\frac{1}{y}\right)}{y^{\delta-\beta-2}}\right)^{q}\left(-\frac{d y}{y^{2}}\right)\right\}^{\frac{1}{q}} \\
& \left.=O\left((n+1)^{\delta} \xi\left(\frac{1}{n+1}\right)\right) O\left[\int_{\frac{1}{\pi}}^{n+1} y^{q(1+\beta-\delta)-2} d y\right\}^{\frac{1}{q}}\right] \text { Using condition }(4) \\
& =O\left((n+1)^{\delta} \xi\left(\frac{1}{n+1}\right)\right) O\left[\left\{\left(\frac{y^{q(1+\beta-\delta)-1}}{q(1+\beta-\delta)-1}\right)_{\frac{1}{\pi}}^{n+1}\right\}^{\frac{1}{q}}\right] \\
& =O\left((n+1)^{\delta} \xi\left(\frac{1}{n+1}\right)\right) O\left[\left\{\frac{1}{q(1+\beta-\delta)-1}\left((n+1)^{q(1+\beta-\delta)-1}-\left(\frac{1}{\pi}\right)^{q(1+\beta-\delta)-1}\right)\right\}\right. \\
& =O\left((n+1)^{\delta} \xi\left(\frac{1}{n+1}\right)\right) O\left((n+1)^{1+\beta-\delta-\frac{1}{q}}\right) \\
& =O\left((n+1)^{\beta+1-\frac{1}{9}} \xi\left(\frac{1}{n+1}\right)\right) \\
& =O\left((n+1)^{\beta+\frac{1}{9}} \xi\left(\frac{1}{n+1}\right)\right) . \tag{11}
\end{align*}
$$

By (9), (10) and (11), we have

$$
\begin{aligned}
\left|\mathrm{t}_{\mathrm{n}}^{\mathrm{E}_{1}, \mathrm{C}_{1}}-\mathrm{f}\right| & =\left((\mathrm{n}+1)^{\beta+\frac{1}{p}} \xi\left(\frac{1}{\mathrm{n}+1}\right)\right) \\
r & \| \mathrm{t}_{\mathrm{n}}, \mathrm{C}_{1} \\
-\mathrm{f} \|_{\mathrm{p}} & =\mathrm{O}\left\{\int_{0}^{2 \pi}\left((\mathrm{n}+1)^{\beta+\frac{1}{p}} \xi\left(\frac{1}{\mathrm{n}+1}\right)\right)^{\mathrm{p}} \mathrm{dx}\right\}^{\frac{1}{p}}
\end{aligned}
$$

or

$$
\begin{align*}
& =O\left((n+1)^{\beta+\frac{1}{p}} \xi\left(\frac{1}{n+1}\right)\right)\left\{\int_{0}^{2 \pi} d x\right\}^{\frac{1}{p}} \\
& =O\left((n+1)^{\beta+\frac{1}{p}} \xi\left(\frac{1}{n+1}\right)\right) . \tag{12}
\end{align*}
$$

This completes the proof of theorem.

5. Corollaries

Corollary 1: If $\beta=0$ and $\xi(\mathrm{t})=\mathrm{t}^{\alpha}, 0<\alpha \leq 1$ then the degree of approximation of a 2π periodic function f belonging to class $\operatorname{Lip}(\alpha, \mathrm{p})$ is given by

Proof:

$$
\begin{align*}
\left\|\mathrm{t}_{\mathrm{n}}^{\mathrm{E}_{1}, C_{1}}-\mathrm{f}\right\|_{\mathrm{p}} & =\mathrm{O}\left(\frac{1}{(\mathrm{n}+1)^{\alpha-\frac{1}{p}}}\right) \\
\left\|\mathrm{t}_{\mathrm{n}}^{\mathrm{E}_{1}, C_{1}}-\mathrm{f}\right\|_{p} & =\mathrm{O}\left((\mathrm{n}+1)^{\beta+\frac{1}{p}} \xi\left(\frac{1}{\mathrm{n}+1}\right)\right) \\
& =\mathrm{O}\left((\mathrm{n}+1)^{\frac{1}{p}} \xi\left(\frac{1}{\mathrm{n}+1}\right)\right) \\
& =O\left((\mathrm{n}+1)^{\frac{1}{p}} \frac{1}{(\mathrm{n}+1)^{\alpha}}\right) \\
& =O\left(\frac{1}{(\mathrm{n}+1)^{\alpha-\frac{1}{p}}}\right) \tag{13}
\end{align*}
$$

Corollary 2: If $\mathrm{p} \rightarrow \infty$ in corollary 1 then the degree of approximation of a 2π periodic function f belonging to class Lip $\alpha \quad(0<\alpha<1)$ is given by

$$
\begin{equation*}
\left\|\mathrm{t}_{\mathrm{n}}^{\mathrm{E}_{1}, \mathrm{C}_{1}}-\mathrm{f}\right\|_{\infty}=\mathrm{O}\left(\frac{1}{(\mathrm{n}+1)^{\alpha}}\right), \text { for } 0<\alpha<1 \tag{14}
\end{equation*}
$$

Remarks: An independent proof of corollary can be developed along the same line as the theorem.
Example: Consider the infinite series,

$$
\begin{equation*}
1-4 \sum_{\mathrm{n}=1}^{\infty}(-3)^{\mathrm{n}-1} \tag{15}
\end{equation*}
$$

The $(E, 1)(C, 1)$ means of the sequence $\left\{S_{n}\right\}$ is given by

$$
\begin{align*}
\mathrm{t}_{\mathrm{n}}^{\mathrm{E}_{1}, \mathrm{C}_{1}} & =\frac{1}{2^{\mathrm{n}}} \sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \sigma_{\mathrm{k}} \\
& =\frac{1}{2(\mathrm{n}+1)}\left(1-(-1)^{\mathrm{n}+1}\right) \tag{16}
\end{align*}
$$

The infinite series (15) is neither $(C, 1)$ nor $(E, 1)$ summable. But from (16), it is summable by $(E, 1)(C, 1)$ method. Therefore product summability $(\mathrm{E}, 1)(\mathrm{C}, 1)$ is more powerful than the individual methods $(\mathrm{C}, 1)$
and $(E, 1)$. Consequently, $(E, 1)(C, 1)$ means gives the better approximation than individual methods $(C, 1)$ and ($\mathrm{E}, 1$).

References

[1] B. E. Rhoades, Journal of Mathematics, 3(2003) 245-247.
[2] A .Zygmund: Trigonometric Series, Cambridge University Press (1959).
[3] G. H. Hardy: On the Summability of Fourier series, Proc. London Math. Soc.,12(1913) 365-372.
[4] G. H. Hardy: Divergent Series, The University Press, Oxford (1949).
[5] E. C. Titchmarsh.: The Theory of functions, Second Edition, Oxford (1939).

