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Abstract 
In this paper, I have taken product of two summability methods, Euler and Cesàro; and establish a new 

theorem on the degree of approximation of the function f belonging to W(L
p
, ξ(t)) classes by Euler - 

Cesàro method.  
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1. Definitions and Notations 

 

 A function f(x)∈ Lipα, if 
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=−+ tO)x(f)tx(f  for 0 <  α ≤ 1 and f ∈ Lip (α, p), if  
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Given a positive increasing function ξ(t), p ≥ 1,  

f (x) ∈ Lip (ξ(t), p), if  
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and f ∈ W (L
p
, ξ(t)), if  
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It is noted that, α →α →ξ→ξ ∞→=ξ=β α

Lip)p,(Lip)p),t((Lip))t(,L(W pt)t(0p
 

So, Lip α ⊆Lip (α, p)⊆  Lip (ξ(t), p) ⊆  W (L
p
, ξ(t)) for  0 < α ≤ 1 and 1p≥ . 
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We define the norm 
p

by     1p,dx)x(ff
p
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π
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The degree of approximation En(f) of function f: R→R is given by 

pnn ftMin)f(E −= . 

Where tn is trigonometric polynomial of degree n  [2].  

Let f be 2π periodic, integrable over (-π,π) in the sense of Lebesgue and belonging to ( ))t(,LW p ξ class, 

then its “Fourier series” is given by  

)ntsinbntcosa(a
2

1
)t(f nn

1n

o ++= ∑
∞

=

.         (1) 

 Let ∑
∞

=0n

nu be the infinite series whose nth partial sum is given by ∑
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Cesåro means method (C,1) to S. It is denoted by  
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means method (E, 1) to S. It is denoted by  
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nE transformation of {σn} is denoted by ,t 11 C,E
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If ∞→→ nas,St 11 C,E
n then sequence {Sn} or infinite series ∑
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=0n

nu is said to be summable by (E, 

1) (C, 1) means method to S. It is denoted by  
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We use following notations.  
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2. Main Theorem 
 

In present paper, the degree of approximation of a function  ( ))t(,LWf p ξ∈  class by (E,1) (C,1) means of 

a Fourier series has been determined in the following form: 

Theorem: If f: R → R is 2π periodic, Lebesgue integrable function in ),( ππ− and is W ( ))t(,Lp ξ , then 

the degree of approximation of function f by (E,1)(C,1)  means of Fourier series (1) satisfies,  
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where δ is an arbitrary number such that q(1-δ)-1> 0, condition (5) and (6) hold uniformly in x.  

 

3. Lemmas 
 

We need the following Lemmas for the proof of our theorem.   
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Lemma 2: Let 11 C,E
nN be given as Lemma I, then  
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4. Proof of the Theorem  

 

Following Titchmarsh [5], n
th 

partial sum of Fourier series (1) at t = x is given by   
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For I1, applying Holder inequality and fact that ( ))t(,LW)t( p ξ∈φ , we have     
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 For I2, applying Holder’s inequality and taking δ as an arbitrary number such that  
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By (9), (10) and (11), we have 
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This completes the proof of theorem. 

 

5. Corollaries 

 

Corollary 1: If 10,t)t(ando ≤α<=ξ=β α
 then the degree of approximation of a π2  periodic 

function f belonging to class )p,(Lip α is given by 















+
=−

−α
p

1

11

)1n(

1
Oft

p

C,E

n  

Proof:     ( )




 ξ+=− +

+β

1n
1

p

C,E

n
p

111

)1n(Oft   

            = O 




 ξ+ + )()1n(

1n
1p

1

 

             = O 




 + α+ )1n(

1p

1

)1n(  

             = O














+
−α

p

1

)1n(

1
.                       (13)  

Corollary 2: If ∞→p  in corollary 1 then the degree of approximation of a π2  periodic function f 

belonging to class )10(Lip <α<α is given by 
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Remarks: An independent proof of corollary can be developed along the same line as the theorem. 

Example: Consider the infinite series, 
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The infinite series (15) is neither (C,1) nor ( E,1) summable. But from (16), it is summable by (E,1) (C,1) 

method. Therefore product summability (E,1) (C,1)  is more powerful than the individual methods (C,1)  
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and (E,1). Consequently, (E,1) (C,1) means gives the better approximation than individual methods (C,1) 

and (E,1). 
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