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Abstract 

In  this   paper  we   introduce   and study  a new  class   c0 ( S,  α–, u
–
 , ||. , .|| ) of  sequences with 

values in   2- normed space as a generalization of basic null sequence space c0. We   investigate  some 

conditions pertaining to  the  containment relations  of the class  c0 ( S,  α–, u– , ||. , .|| ) in terms of 

different  α– and  u
– and  explore the linear  topological  structures  of   the space   c0 ( S,  α–, u– , ||. , .|| )  

by endowing it  with a suitable natural paranorm. 
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1. Introduction and Preliminaries 

 

Before proceeding with the main results, we recall  some of the basic notations and definitions that 
are used in this paper. The notion of 2–normed space was initially introduced by S. GÄahler [1]  as 
an interesting linear generalization of a normed linear space, which was further studied by  J.A. 
White and  Y.J. Cho [2], K.Iseki [3],  R. Freese et al. [4,5], W.Raymond et al. [6] and many others. 
Recently a lot of activities have been  started  by many researchers to study this concept   in    
different    directions, for instances  E. Savas [7], H. Gunawan and   H. Mashadi [8] , J.K. Srivastava 
and N.P.  Pahari [9] , M. Açikgöz [10] and others. 
Let S  be a vector space of dimension  d  > 1 over K, the  field of real or complex numbers. A  2 - 
norm on S  is a real valued function  ||. , .|| on  S × S satisfying the following conditions: 

2- N1:  || ξ, η || ≥ 0 and || ξ, η || = 0 if and only if ξ and η are linearly dependent; 

2-N2:  || ξ, η || = || η, ξ ||, for all ξ, η ∈  S; 

2-N3:   || γξ, η || = |γ | ||ξ¸ η ||, where γ∈K and ξ, η ∈  S;and 

           2-N4 :  || ξ1 + ξ2, η || ≤ || ξ1, η || + || ξ2, η || ,for all ξ1 , ξ2 and  η∈  S. 

The pair (X, ||. , .||) is called a 2–normed space. Thus the notion  of 2–normed space is just  a two- 

dimensional analogue of a normed space . Recall that (X, ||. , .||) is a 2-Banach space if every Cauchy 

sequence in X is convergent  to some x0 in X.        
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The pair (S, ||. , .||) is called a 2–normed space. Thus the notion  of 2–normed space is just  a two- 
dimensional analogue of a normed space . Recall that (S, ||. , .||) is a 2-Banach space if every Cauchy 
sequence in S is convergent  to some ξ0 in S.        
Geometrically, a 2-norm function generalizes the concept of area function of parallelogram due to the 
fact that, in the standard case, it represents the area of the usual   parallelogram spanned by the two 
associated vectors.For example, consider      S  =  R2, being equipped with 

|| ξ, η ||  = | ξ1η2 – ξ2η1|,  where ξ = (ξ1, ξ2) and η = (η1 , η2). 
Then (S, ||. , .||) forms  a 2–normed space and  || ξ, η ||  represents the area of the parallelogram 
spanned by the  two associated vectors  ξ and η.     
 Again, let  S  = R

3 and define the function ||. , .|| on S × S  by 

|| ξ, η || = 









Det 







i j k

 ξ1  ξ2  ξ3

 η1  η2  η3

  

where ξ = (ξ1, ξ2, ξ3) and y = (η1, η2, η3).  
Obviously (S, ||. , .||) forms a 2–normed space. 

Analogously, if (S , <. , .>) be a finite dimensional inner product space and ||. , .||  defined on S × S  by  

|| ξ, η || = 






<ξ‚ξ > < ξ‚ η >

< η‚ ξ > < η‚ η >
 , 

then we can see that (S, ||. , .||) satisfies all the conditions of  2–normed space. 
The notion of convergence has introduced by White and Cho [2]. A sequence (ξn) in a linear 2–

normed space S is convergent  if there is an ξ ∈ S such that  
lim

n→∞  || ξn – ξ, η || = 0,  for each η ∈ S .It 

is said to be  a Cauchy if there are η and  ν in S such that η and ν are linearly independent and   

 
lim

m‚n→∞ ||ξm – ξn‚ η|| = 0    

and 

 
lim

m‚n→∞ ||ξm – ξn‚ ν|| = 0. 

A linear 2–normed space (S, ||.,.||) is called 2–Banach space if every Cauchy sequence in S  is 

convergent to some ξ ∈ S. 

The  notion of paranormed space  is closely related to   linear metric space , see A. Wilansky [11]. A 

paranormed space (S, T ) is a linear space S  with zero element θ together with a function  

 T : S → R+  (called  a paranorm on S) which satisfies the following axioms: 

        PN1:  T (θ) = 0;  

        PN2: T (ξ) = T (–ξ) , for all ξ ∈ S; 

        PN3: T (ξ + η) ≤  T (ξ) + T (η) , for all ξ , η ∈ S; and 

         PN4: Scalar multiplication is continuous  i.e., if (γn) is a sequence of scalars with γn → γ  

                as n → ∞ and (ξn) is a sequence of vectors with T (ξn − ξ) → 0  as n → ∞ then   

T (γn ξn − γξ) → 0 as n → ∞. 

Note that the continuity of scalar multiplication is equivalent to   

       (i)   if  T (ξn) → 0  and   γn → γ as     n → ∞, then T(γn ξn) → 0 as  n → ∞  

and   
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       (ii)  if γn → 0 as n → ∞ and  ξ be any element in S, then      T (γn ξ) → 0, see Wilansky [11].  

A paranorm is called total if    T (ξ) = 0 implies ξ = θ, see  A. Wilansky [11]. 

The studies of paranorm  on sequence spaces were initiated by  Maddox [12]  and many others.  

Srivastava and  et al. [13-15],  Pahari [16], Parashar  and  Choudhary  [17], Bhardwaj and Bala [18]  
and many others further studied various types of  paranormed sequence spaces  and function spaces.  

 A sequence space S is said to be normal if ξ 
–

 =  (ξk) ∈ S and α–  = (αk) a sequence of scalars with |αk| 

≤ 1,  for all k ≥ 1, then   

α– ξ 
–

    = (αk ξk) ∈S . 

2.  The Class  c0 ( X,  λλλλ
–

, u
–
 , ||. , .|| ) of 2-Normed Space Valued Vector Sequences  

 

  Let u– = (uk) and   v– = (vk) be any sequences of strictly positive real numbers and  

 λ
–

 = (λk)   and   µ–= (µk )  be the  sequences of non zero complex numbers. Let  ( X, ||. , .|| ) be the 2- 

Normed space over the field C  of complex numbers and  θ denotes the zero element of X.  Let ω(X) 

denotes the linear space of all sequences  x – = (ξk) and  y– = (ηk ) with ξk , ηk ∈ X , k  ≥ 1  with usual 

coordinate wise operations  i.e., 

x –  + y– = (ξk +ηk) and α x –  = (αξk ) ,for each  x –  , y– ∈ ω (X) and  α∈ C. 

We shall denote ω (C) by  ω. Further, λ– = (λk ) ∈ ω  and   x – ∈  ω (X )   we shall write   λ– x – = (λk ξk ) 

. 

We now introduce   the following classes of 2-normed   space X–valued sequences  

 c0 (  X,  λ
–

, u– , ||. , .|| )   = {x– = (xk) ∈ ω(X ), xk  ∈ X,  k ≥ 1 satisfying  || λk xk‚ y|| uk  → 0 as k→ ∞ ,     

                                                                                                                for each y ∈ X }. 

In fact, this  class is a generalization of the  familiar  sequence spaces, studied in Srivastava et al. 

(1996) [12], Srivastava (1996), Pahari ( 2011) [16], Pahari and et al ( 2011) [11] , using 2-norm .  

Further, when λk  = 1 for all  k , then   c0 (  X,  λ
–

, u– , ||. , .|| )   will be denoted by  c0 ( X, u– , ||. , .|| )  and 

when   uk = 1 for all k, then   c0 (  X,  λ
–

, u– , ||. , .|| )   will be denoted by    c0 ( X,  λ
–

 , ||. , .|| ). If  uk =  λk = 

1 for all k  , then the class    c0 (  X,  λ
–

, u– , ||. , .|| )  will be denoted by   c0 ( X, ||. , .|| )  . Further, when X 

= C we simply write   c0 (  X,  λ
–

, u– , ||. , .|| ) as    c0 (λ
–

, u– , ||. , .|| ).  

3. Containment Relations    

In this section, we investigate   some inclusion relations of  the class c0( S, ||. , .||,  α–, u– ) arising in terms of 

different u– and α– . Throughout, we denote   

  sup uk  =L  for each k and for scalar α,  A [α] = max (1, |α|). 
 But when the sequences uk and vk occur, then to distinguish L  we use the notations          
 L(u) and L(v) respectively. 

Theorem 3.1: For any u
–
 = (uk), c0 (  S,  α

–
, u
–
 , ||. , .|| ) ⊂⊂⊂⊂ c0 ( S,  β

–

, u
–
 , ||. , .|| )   

                       if and only if  lim inf k 



αk

βk
 

uk

 > 0. 

 

Proof: 
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    For the  necessity, assume  that   

c0 (  S,  α– , u– , ||. , .|| ) ⊂ c0 ( S,  β
–

, u– , ||. , .|| ) 

      but  lim infk 



αk

βk
 

uk

 = 0.   Then we can find a sequence (k(n)) of integers   such that  

1 ≤ k(n)  <   k(n +1), n ≥ 1 

for which 

                                 n
2 |αk(n) |

 uk(n)    < |βk(n)|
uk(n) , for   all n ≥ 1.                           ...( 3.1) 

Now, corresponding to   ρ ∈ S and ρ ≠ θ, we define the sequence ξ 
–

 = ( ξk) by 

                               ξk = 


αk(n)

-1 n-2/uk(n) ρ‚ if k = k(n) ‚  n ≥1 and

θ‚ otherwise.
                          ...( 3.2) 

 Then for k = k(n),  n ≥ 1 ,we have  

                 || αk ξk‚ η|| 
uk

  =    ||n-2/uk(n) ρ‚ η || uk(n)   

                                      ≤   
1

 n2  ||ρ‚ η || uk(n) 

                                      ≤   
1

 n2  A [ ||ρ‚ η|| L(u) ] → 0 as n→ ∞, 

 where   ||ρ, η|| uk(n) ≤  A [ || ρ, η|| L(u) ]  for each n ≥ 1 is used 

 and   

   || αk ξk‚ η|| 
u

k
 = 0, for k ≠ k(n) , n ≥ 1.   

This   shows that ξ 
–

 ∈   c0 (  S,  α–, u– , ||. , .|| ) .   
On the other hand, let us choose  η ∈ S such that  || w, η || = 1. Then for k  = k(n), n ≥ 1,  and in view of (3.1) 
and (3.2) ,we have 

                                   || βk ξk ‚η|| uk  =  || β 
k(n)

  ξ
 k(n)

 ‚η || u k(n)   

=   
1
n

2 || w‚ η||uk(n)  



αk(n)

 βk (n)
 

uk(n)

  ≥  1. 

This shows that ξ 
–

 ∉   c0 ( S,  β
–
, u–,||. , .|| ),a contradiction. 

For the sufficiency, assume that lim infk 



αk

βk
 

uk

 > 0.Then there exists m > 0   such that    

m |βk|
 uk  < |αk |

 uk 

for all sufficiently large values of k. 

Let ξ 
–

 = (ξk)  ∈  c0 (  X,  α–, u– , ||. , .|| ) . Then for each η ∈S, 

|| αk ξk‚ η|| 
u

k
 → 0 as k→ ∞ . 

Now for each η ∈ S, 

                            ||βk ξk‚ η|| uk    ≤    
|αk| 

uk

 m    ||ξk ‚η|| uk  

                                            ≤   
1
 m  || αk ξk‚ η|| 

uk
 → 0 as k → ∞.  

This clearly implies that  ξ 
–

 ∈ c0 ( S,  β
–
, u– , ||. , .|| ) and hence  

c0 (  S,  α–, u– , ||. , .|| ) ⊂ c0 ( S,  β
–

, u– , ||. , .|| ). 

This completes the proof . 

Theorem 3.2: For any u
–
 = (uk),  c0 ( S,  β

–

 , u
–
 , ||. , .|| )    ⊂ ⊂ ⊂ ⊂      c0 ( S,  α

–
, u
–
,||. , .|| )  if and only if 

                   lim     supk 



αk

βk
 

uk

 < ∞∞∞∞. 
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Proof:  

For the necessity, suppose that   

c0 ( S,  β
–

, u–,||. , .|| )  ⊂ c0 (  S,  α– , u– , ||. , .|| ) 

but  lim  supk 



αk

βk
 

uk

= ∞. Then there exists a sequence (k(n)) of positive integers with   

1 ≤  k(n) < k(n + 1) , n ≥ 1 

satisfying 
             |αk(n)|

 uk(n)  >   n2 |βk(n)|
 uk(n)  ,for each n ≥ 1.                             ...( 3.3) 

    Corresponding to ρ ∈ S and ρ ≠ θ, we define a sequence  ξ 
–

 = (ξk) by   

                              ξk  =  


βk(n)

-1 n-2/uk(n) ρ‚ if k = k(n)‚ n ≥1 and

θ‚ otherwise.
                     ...( 3.4) 

    Then for k = k(n),  n ≥ 1, we have  
                      || βk ξk‚ η|| uk   =  || β 

k(n)
  ξ

 k(n)
 ‚η || u k(n)  

                                           =  ||n-2/uk(n) ρ‚ η || uk(n)    

                                            ≤   
1

 n2  ||ρ‚ η || uk(n) 

                                            ≤   
1

 n2  A [ ||ρ‚ η || L(u) ]  → 0 as n→ ∞ 

          and  

||βk ξk‚ η|| uk  = 0, for k ≠ k(n) , n ≥ 1. 

This shows that ξ 
–

 ∈   c0 ( S,  β
–

, u–,||. , .|| ) .  
On the other hand, let us choose η ∈ S such that  ||ρ, η|| = 1. Then for k = k(n), n ≥ 1, in view of (3.3) and (3.4) 
,we have 

|| αk ξk ‚η|| uk =  



αk(n)

 βk (n)
 

uk(n)

 . 
1
n

2 ||ρ‚ η||uk(n)     ≥  1 

and so ξ 
–

 ∉   c0 (  S,  α– , u– , ||. , .|| ) ,a contradiction. 

For the sufficiency, assume that lim supk 



αk

βk
 

uk

  < ∞. Then we can find a positive constant d  such  that   

d |βk|
 uk   >  |αk|

 uk 

for all sufficiently large values of k. Let ξ 
–

 = (ξk)  ∈ c0 ( S,  β
–

, u–,||. , .|| ) . Then we have 

||βk ξk‚ η|| uk → 0 as k→ ∞ ,  for each η ∈S. 

Now we have 

                                  ||αk ξk‚ η || uk   ≤    d|βk|
uk  || ξk‚ η|| uk 

                                                      ≤    ||βk   ξk‚ η|| uk → 0 as k→ ∞ ,   

for each η ∈S. This clearly implies that  ξ 
–

 ∈ c0 (  S,  α– , u– , ||. , .|| )  and hence  

c0 ( S,  β
–
, u–,||. , .|| )   ⊂   c0 (  S,  α– , u– , ||. , .|| ). 

  

The proof is now complete. 

On combining the Theorems 3.1 and 3.2, we get:  

Theorem 3.3: For any u
–
 = (uk),  c0 (  S,  α

–
, u
–
 , ||. , .|| )  = c0 ( S,  β

–

, u
–
,||. , .|| )  

                       if and only  if    

0  <  lim     infk 



αk

βk
 

uk

  ≤ ≤ ≤ ≤  lim     supk 



αk

βk
 

uk

 < ∞.∞.∞.∞.    

 Corollary 3.4: For any u
–
 = (uk),  
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(i)  c0 (  S,  α
–
, u
–
 , ||. , .|| )  ⊂⊂⊂⊂ c0 ( S,  u

–
,||. , .|| ) if and only if   lim infk |ααααk|

uk > 0 ; 

(ii) c0 ( S,  u
–
,||. , .|| )  ⊂⊂⊂⊂ c0 (  S,  α

–
, u
–
 , ||. , .|| )  

 if and only if   lim supk |ααααk|
uk < ∞∞∞∞;and 

(iii)   c0 (  S,  α
–
, u
–
 , ||. , .|| )  = c0 ( S,  u

–
,||. , .|| )  

 if and only if  

      0 <   lim infk |ααααk|
uk  ≤   ≤   ≤   ≤   lim supk |ααααk|

uk  < ∞∞∞∞. 

Proof: 

The proof follows by putting βk = 1 for all k in Theorems 3.1, 3.2 and  3.3. 

Theorem 3.5: For any α–  = (ααααk), c0 (  S,  α
–
, u
–
 , ||. , .|| )  ⊂⊂⊂⊂ c0 ( S,  α

–
, v
–
,||. , .|| )   

                   if and only if   

lim infk 
vk
uk
 > 0. 

Proof: 

For the necessity, suppose that the inclusion holds but lim infk 
vk

uk
 = 0. Then there exists a sequence (k(n)) of 

positive integers   such that 

1 ≤ k(n) <  k(n + 1), n ≥ 1 
for which     

                                            n vk(n) <   uk(n)  , for each n ≥ 1.                            …(3.5) 

Let  ρ ∈ S and ρ ≠ θ. We define a sequence   ξ 
–

 = (ξk)  by 

                      ξk = 


αk(n)

-1 n 
-1/uk(n) ρ‚ for k = k(n) ‚  n ≥1 and

θ‚ otherwise.
          ...( 3.6) 

  Then for each η ∈ S, k = k(n), n ≥ 1  , we have        

                            ||αk ξk ‚ η|| 
u

k
  =    ||n

 -1/u
k(n) ρ‚ η|| uk(n)    

                                                =  
1
n
   || ρ‚ η||uk(n)                                                     

                                      ≤   
1
n

  A [ ||ρ‚ η || L(u)
 ]   → 0 as n →∞                                           

       and  

              ||αk ξk ‚ η|| 
uk

 = 0, for k ≠ k(n) , n ≥ 1. 

This shows that  ξ 
–

 ∈ c0 (  S,  α– , u– , ||. , .|| ). But on the other hand, let us choose η ∈ S such that  ||ρ, η|| = 1. 
Then for k  = k(n), n ≥ 1, in view of (3.5) and (3.6) ,we have 

||αk ξk ‚ η|| 
v
k
  = ||α 

k(n)
 ξ 

k(n)
 ‚ η|| vk(n) 

                  =  || n-1/uk(n) ρ‚ η|| vk(n) 

                                                                     ≥  
1

 n
1/n    || ρ‚ η|| vk(n) 

                                                             ≥  
1

 n
1/2    

This shows that  ξ 
–

 ∉   c0 ( S,  α–, v–,||. , .|| ) , which contradicts our assumption.  

For the sufficiency of the condition, suppose that lim infk 
vk

uk
 > 0. Then there exists a m > 0 such that    vk  >  m uk 

for all sufficiently large values of k.  

Let  ξ 
–

 = (ξk) ∈ c0 (  S,  α–, u– , ||. , .|| ) . Then for each η ∈ S 

||αk ξk ‚ η|| 
uk

  → 0  as k → ∞. 

Hence for a given ε > 0, if we choose 0 < δ < 1  satisfying  δ m  < ε   satisfying   
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       ||αk ξk , η  ||

 uk   <  δ <  1 

for each η ∈ S and   for all sufficiently large values of k.Thus  

  ||αk ξk , η ||
 vk     ≤ [||αk ξk ‚ η ||

 uk] m   

               ≤ δ m    < ε, 

for each η ∈ S and   for all sufficiently large values of k   and consequently ξ 
–

 ∈  c0 ( S,  α–, v–,||. , .|| ). Hence  

  c0 (  S,  α–, u– , ||. , .|| ) ⊂  c0 ( S,  α– , v–,||. , .|| ). 

  This completes the proof of the theorem. 

Theorem 3.6: For any α–  = (ααααk), c0 ( S,  α
–
, v
–
,||. , .|| ) ⊂⊂⊂⊂ c0 (  S,  α

–
, u
–
 , ||. , .|| )   

                       if and only  if   lim supk 
vk
uk
 < ∞∞∞∞. 

Proof:  

 For the necessity, suppose that the inclusion holds but lim supk  

vk

uk
 =  ∞ . Then there exists a sequence  (k(n)) of 

positive integers   such that  

1 ≤ k(n) < k(n+ 1), n  ≥  1 
 for which           

                                      vk(n)  >  n uk(n) ,for all n ≥ 1.                                ...( 3.7) 

Corresponding to ρ ∈ S and ρ ≠ θ , we define a sequence   ξ 
–

 = (ξk)  by 

              ξk = 


αk(n)

-1 n 
-1/vk(n) ρ‚ for k = k(n) ‚  n ≥1 and

θ‚ otherwise.
                              ...( 3.8) 

Then for each η ∈ S, k = k(n), n ≥ 1  , we have        

                                  ||αk ξk ‚η || 
vk

 =    ||n-1/vk(n) ρ‚η|| vk(n)  

                                                       =  
1
n
 || ρ‚ η||vk(n) 

                                                       ≤   
1
n

  A [ ||ρ‚ η || L(v)
]   → 0 as n →∞ 

             and 

||αk ξk ‚ η|| 
v
k 
 = 0, for k ≠ k(n) , n ≥ 1. 

This shows that  ξ 
–

 ∈ c0 ( S,  α– , v–,||. , .|| ). But on the other hand, let us choose η ∈ S such that  

 || ρ, η|| = 1. Then for k  = k(n), n ≥ 1, in view of (3.7) and (3.8) ,we have  

||αk ξk ‚ η|| 
u

k
  =  || n-1/vk(n) ρ‚ η|| uk(n) 

                                                                     ≥  
1

 n
1/n    || ρ‚ η|| uk(n)  

                                                              ≥  
1

 n
1/2    

This shows that  ξ 
–

 ∉   c0 (  S,  α– , u– , ||. , .|| ) , a contradiction.  

For the sufficiency of the condition, assume that lim supk 
vk

uk
 < ∞. Hence there exists d > 0 such that    vk < d uk 

for all sufficiently large values of k.  

Let  ξ 
–

 = (ξk) ∈ c0 ( S,  α– , v–,||. , .|| ). Then for each η ∈ S 

||αk ξk ‚ η|| 
v
k
  → 0  as k → ∞. 

 Hence for a given ε > 0, if we choose 0 < δ < 1  satisfying  δ 1/d  < ε   satisfying   
       ||αk ξk , η  ||

 vk   <  δ <  1 

for each η ∈ S and   for all sufficiently large values of k.Thus  

  ||αk ξk , η  ||
 uk     ≤ [||αk ξk ‚ η||

 v
k] 1/d  
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                         ≤ δ 1/d    < ε, 

for each η ∈ S and   for all sufficiently large values of k   and consequently  

            ξ 
–

 ∈  c0 ( S,  α– , u–,||. , .|| ). Hence  

c0 ( S,  α– , v–,||. , .|| ) ⊂ c0 (  S,  α– , u– , ||. , .|| ) .   

This completes the proof. 
On combining the Theorems 3.5 and 3.6, one obtain 

Theorem 3.7: For any α– = (ααααk),c0 (  S,  α
–
, u
–
 , ||. , .|| )   = c0 ( S,  α

–
, v
–
,||. , .|| )   

                         if and only if   

                               0 < lim infk 
vk
uk
  ≤≤≤≤  lim supk 

vk
uk
 < ∞.∞.∞.∞. 

Corollary 3.8: For any α–  = (ααααk), 

(i) c0 ( S,  α
–
 , ||. , .|| )  ⊂ ⊂ ⊂ ⊂  c0 (  S,  α

–
, u
–
 , ||. , .|| )  if and only if lim inf k uk > 0; 

(ii) c0 (  S,  α
–
, u
–
 , ||. , .|| ) ⊂⊂⊂⊂ c0 ( S,  α

–
 , ||. , .|| )    if and only if lim sup k uk  < ∞∞∞∞; and 

(iii)  c0 (  S,  α
–
, u
–
 , ||. , .|| )   = c0 ( S,  α

–
 , ||. , .|| )   

 if and only if   

                             0 <  lim infk uk ≤≤≤≤     lim supk uk  <  ∞∞∞∞. 

Proof:  

  Proof follows by taking uk = 1 for all k and replacing  v– by  u– in Theorems 3.5 , 3.6 and 3.7.    

Theorem 3.9: For any α–  = (ααααk), β
–

 = (ββββk), u
–
 = (uk) and v

–
 = (vk),  

c0 (  S,  α
–
, u
–
 , ||. , .|| )  ⊂ ⊂ ⊂ ⊂  c0 ( S,  β

–

 , v
–
, ||. , .|| )   if and only if 

                   (i) lim infk 



αk

βk

 

uk

 > 0  ; and  

                             (ii)       lim infk 
vk
uk
  > 0. 

Proof: 

 Proof of the theorem follows immediately from the Theorems 3.1 and 3.5. 

In the following example, c0 (S,  α–, u– , ||. , .|| )  may strictly be contained in c0 ( S, β
–
, v–, ||. , .|| )      in spite of  the 

satisfaction of the conditions (i) and (ii) of Theorem 3.9. 
Example 3.10: 

 Let ( S, ||. , .|| )  be  a 2- normed  space and consider a sequence  ξ 
–

= (ξk) defined by   

ξk = k 
–k

 ρ, if  k = 1, 2, 3, …, 

where ρ ∈ S and ρ ≠ θ. 
Further, let uk = k 

–1, if k is odd integer, uk = k 
–2, if k is even integer,  

                   vk = k –1 for all values of k, αk = 3k, βk = 2k for all values of k.  
 Then  





αk

βk

 

uk

 = 
3
2 or  



 3

 2
 

1/k

according as k is odd or  even integer 

and hence   

lim infk 



αk

βk
 

uk

 > 0. 

Further, 
vk

uk
 = 1, if k is odd integer, 

vk

uk
 = k, if k is even integer.  

Therefore  lim infk 
vk

uk
  > 0. Hence the conditions (i) and  (ii) of Theorem 3.9 are satisfied. 

Now  for each η ∈ S, we have 
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||βk ξk ‚ η||
 v

k
    = ||2k k –k

 ρ ‚ η||
 
1/k 

                                                                             ≤ 
1
k
   2 || ρ ‚ η||

 
1/k  

                                                                             ≤  
1
k
  2A [ || ρ‚ η || ]  → 0  as k → ∞,   

and it shows that ξ 
–

 ∈  c0 ( S,  β
–

,  v–, ||. , .|| ).   

But on the other hand, let us choose  η ∈ S such that  || ρ, η || = 1. Then for each even integer k, we have  

   || αk ξk ‚ η||
 uk

   =  ||3k k –k ρ ‚ η||
 
1/k 2 

                                                                          =  (3/k)1/ k || ρ ‚ η||
 
1/k 2   

                                                                          > 
1
2

 .  

This implies that ξ 
–

 ∉ c0 (  S,  α– , u– , ||. , .|| ).Thus the containment of c0 (  S,  α– , u– , ||. , .|| )  in   

c0 ( S, β
–

, v–, ||. , .|| )  is strict inspite of the satisfaction of the conditions (i) and (ii)  of the Theorem 3.9. 
 

4.   Linear Topological  Structures of  c0 (  S,  α
–
, u
–
 , ||. , .|| )  

 

In this section, we shall investigate some results that characterize the linear topological structure of 

the class c0 (  S,  α–, u– , ||. , .|| ) by endowing  it  with suitable natural paranorm.  Throughout we take 

coordinatewise operations of sequences over the field C of complex numbers i.e.,for   ξ 
–

  = (ξk ) and  η– 
= (ηk ) and scalar γ, 

ξ 
–

 + η– = (ξk + ηk )  
and  

  γ ξ 
–

  = (γ ξk ) 
and we see below that each of these classes forms a complete paranormed linear    space over C.  
Moreover, we use frequently 

        | ξ + η |
 uk ≤  S {|ξ| 

uk
 + |η| 

uk },  

              where  ξ , η ∈ C, 0 < uk  ≤  supk uk  = L < ∞ and  A(α) = max (1, |α|  ).      

Theorem 4.1:  The space   c0 (  S,  α
–
, u
–
 , ||. , .|| )  forms a   linear space over C  if and  only if        

                              supk uk  is bounded above .     

Proof:  

For the necessity of the conditions, suppose that   c0 (  S, α–, u– , ||. , .|| )    is a linear space 
over C  but  supk uk = ∞.  Then  there  exists a sequence (k(n))  of positive integers  
satisfying    

1 ≤  k(n) < k(n + 1), n ≥ 1 
for which     

                     uk(n)    >  n  ,for each n ≥ 1                               … .(4.1) 

Now, corresponding to ρ ∈ S and ρ ≠  θ, we define the sequence ξ 
–

 = (ξk) by 

ξk = 


αk(n)

-1 n-2/uk(n) ρ‚ if k = k(n) ‚  n ≥1 and

θ‚ otherwise.
  … .(4.2)  

Then for k = k(n),  n ≥ 1, we have  
                                  ||αk ξk‚ η|| uk  =    ||n-2/uk(n) ρ‚ η || uk(n)) 

                                                       ≤    
||ρ‚ η || uk(n)

 n2    → 0 as n→ ∞, 
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            and  

||αk ξk‚ η|| uk = 0, for k ≠ k(n) , n ≥ 1 

showing that ξ 
–

 ∈   c0 (  S,  α– , u– , ||. , .|| ).  

But on the other hand, let us choose η ∈ S such that  ||ρ, η|| = 1. Then for such η   and  scalar γ = 4, 
for k  = k(n),  n ≥ 1, in view of (4.1) and (4.2), we have 

                                             || γ αk ξk‚ η || uk      
=

   || αk(n) γ ξk(n ) ‚ η || uk(n)       

                                                                                                               =    || 4  n–2/ uk(n)  ρ ‚η || uk(n) 

                                                                                                             =    
4 uk(n)

 n2   

                                                                                                              ≥   
sup

n
  

4 n

 n
2  ≥   1 . 

                       This shows that  γ ξ 
–

 ∉   c0 (  S,  α–, u– , ||. , .|| )  , a contradiction.  

For the sufficiency of the condition, assume that  supk uk < ∞. Let ξ 
–

, η– ∈ c0 (  S,  α–, u– , ||. , .|| )  and   γ, 
ρ ∈ C. Then for each  η ∈ S, we have 

||αk ξk‚ η|| uk   → 0  

 and    

 ||αk ηk‚ η|| uk →0, as k → ∞.  

        We now setting   S = max ( 1,2L-1 ),  then we have 
          ||αk (γξk + ρηk)‚ η || uk  =   (|| γαk ξk‚ η || + || ρ αk   ηk‚ η || ) uk 

                                                                           ≤   ( S || γ αk ξk‚ η || uk + S || ρ αk     ηk‚ η || uk ) 

                                                       =  S   |γ| uk  || αk ξk‚ η || uk  + S   |ρ| uk  || αk ηk‚  η || uk                                              

which tends to 0 as k → ∞, for each η ∈ S  and hence  αξ 
–

 + ρ η– ∈ c0 (  S,  α–, u– , ||. , .|| ).   

This implies that  c0 (  S,  α–, u– , ||. , .|| )  forms  a linear space over C. This completes the proof.  

Let  u– ∈ ℓ∞    i.e., supk  uk  < ∞ ,  M = max (1, supk  uk ) and  consider   a real valued function T on   

c0 (  S,  α–, u– , ||. , .|| ) defined by  

T (x–) ={ 
sup

k
 || αk ξk  ‚ η ||

 u
k 

/M  , for each  η ∈ S },for ξ 
–

 ∈  ℓ∞ (  S,  α–, u– , ||. , .|| ).        … (4.3)  

We prove below that  c0 (  S,  α–, u– , ||. , .|| ) with respect to T  forms  a paranormed space. 

Theorem: 4.2 (c0 (  S,  α
–
, u
–
 , ||. , .|| ), T ) forms a   total  paranormed space. 

Proof: 

Since  T(ξ 
–

) ≥ 0 ; T(ξ 
–

) = 0  if and only if  ξ 
–

   =  θ–; T (–ξ 
–

) = T (ξ 
–

) ; and   

            T (ξ 
–

 + η–) ≤ T (ξ 
–

) + T (η
–)  

easily follow. So  PN1 ,  PN2  and PN3 are  obvious.  
For   PN4  i.e., the continuity of scalar multiplication, it suffices to show that 

        (a)  if   ξ 
–

(n)   →  θ– in T and γn 
 → γ as  n → ∞,then γn ξ 

–
(n)   →  θ– in T; 

and 

         (b)  if  γn 
 → 0 and  ξ 

–

 ∈  c0 (  S,  α–, u– , ||. , .|| ) , then  γn ξ 
–

   →  θ– in T . 
Now  (a)  is easily proved if we suppose |γn| ≤ L for all n ≥ 1 and  in view of (4.3) , we have 

                                 T (γn ξ 
–

(n))   =  { 
sup

k
 ||  γn αk ξk

(n)
 ‚ η ||

 u
k 

/M  , for each  η ∈ S } 

                                     ≤   { 
sup

k
  |γn| 

u
k 

/M   
sup

k
 || αk ξk

(n) ‚ η ||
 u

k 
/M , for each  η ∈ S } 
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                  = A(L) { 
sup

k
 || αk ξk

(n)
 ‚ η ||

 u
k 

/M  , for each  η ∈ S } 

                                   ≤  A(L) T (ξ 
–

(n)), 
  implies that  

T (γn ξ 
–

(n))  → 0, as T (ξ 
–

(n)) → 0 as n → ∞. 

To prove (b), let ξ 
–

 ∈  c0 (  S,  α–, u– , ||. , .|| ), |γn| < 1 for all n ≥ N1 and ε > 0. Then there exists  a 
positive integer K such that 

||αk  ξk  ‚ η ||  
u

k < ε M   
for all k ≥ K and  for each  η ∈ S  and hence for all k ≥ K and n ≥ N1, we have 

|| γn αk ξk   ‚ η || 
u

k = |γn|
  u

k  || αk ξk  ‚ η || 
u

k    
                         < εM, for each  η ∈ S. 

Now choose N2 such that for all k = 1, 2, …, K – 1 and n ≥ N2, 

|| γn αk ξk  ‚ η ||  
u

k = |γn|
 u

k  || αk ξk  ‚ η || 
u

k    
                             < ε M, for each  η ∈ S. 

Thus, T (γn ξ 
–

) ≤ ε, for n ≥ N =  max (N1, N2), which proves (b).The totality of T is obvious. 
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