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Abstract
In this paper, Varitational Iteration Method using He’s Polynomials is used to construct the exact as well
as approximate solutions of differential equations. From the obtained numerical results, it has been

observed that this proposed technique is very efficient and reliable for the solution of the linear and non-

linear system of differential equations. Numerical results and graphical representation reflect the accuracy

and effectiveness of the proposed modification.
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1. Introduction
In recent years considerable interest in system of ordinary differential equations has been stimulated due

to their numerous applications in the fields of physics and engineering. A huge number of research and

investigations have been invested in these directions. In this paper we consider a very efficient and power

full technique He’s variational iteration method for finding approximate solutions of systems of
differential equations. This technique was first time introduce by the Chinese mathematician He [1]. The

variational interaion method is used to investigate autonomous ordinary differential systems [2],

Helmholtz equation [3], Burger’s and coupled Burger’s equation [4], Coupled Schrodinger-KdV

equations and shallow water equations [4]. Also the application of the present technique to linear

fractional partial differential equations arising from fluid mechanics is presented in [5]. The variational

iteration method is investigated in [6-10] to solve parabolic integro-differential equations. This method is
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applied to find the solution of various classes of variational problem [11]. Some recent research works in

this field are [12-20].

2. Analysis of VIM for System of Differential Equations

In case of m equations, we rewrite equations in the form

,,2,1,)()()( 21 mixfyyyNyL imiii   (1)

where iL is a linear with respect to iy and iN is the nonlinear part of ith equation. In this case the correct

functional are obtained as
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and the optimal values of ,,,2,1, mii  are obtained by taking the variation from both sides of the

functional and finding stationary condition using

.,,2,1,01, miy ni 

Our goal in the paper is the use of the following system of sequences instead of the system which results

from the Variational iteration method:
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For .,,2 mi  In fact the updated values     ,,,, 1,12,21,1  ninn yyy  are used for finding  .1, niy This

technique accelerates the convergence of the system of sequences. Therefore, using just few terms of the

sequences, an accurate solution can be obtained for a large domain of the problem.

3. Analysis of VIM using He’s Polynomials
Variational Iteration Method using He’s polynomials [21] is a modified form of VIM. This modification
is obtained by coupling the correction functional of VIM with He's polynomials and is given by
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By comparing the like powers of p, give solution of various order.

4. Numerical Applications

Example 4.1 Consider the system of first order differential equations,

,cos31 xyy  (4)

,32
xeyy  (5)
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,213 yyy  (6)

subjected to the initial conditions

  ,101 y   ,002 y   .203 y

According to VIM, correction functional for Eq. (4),  (5)  & (6)  can be writ ten as,
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The Lagrange multiplier   3,2,1,, ixi  can be identified via variational theory; i.e. the multiplier

should be chosen in such a way that the correction functional equation is stationary i.e.

      .0&0,0 1,31,21,1   xyxyxy nnn  From Eq. (7)

  ,1,1  x   ,1,2  x and   ,1,3  x

Thus Eq. (7) becomes
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for ,0n Eq. (8) gives,
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for ,1n Eq. (8) gives,
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Therefore, we get the result as,
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This is the same result obtained by ADM in [22].

Example 4.2 Consider the non-linear system of differential equations,

,2 2
2

1 y
xd

yd
 (10)

,1
2 ye

xd

yd x (11)

,32
3 yy

xd

yd
 (12)

subjected to the initial conditions

  ,101 y   ,102 y   .003 y

The exact solution is given, ,2
1

xey  ,2
xey  and .3

xexy 

According to VIM, the correction functional for the Eq. (10),  (11) & (12) can be

writ ten as
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The Lagrange multiplier   3,2,1,, ixi  can be identified via Variational Theory; i.e. the multiplier

should be chosen in such a way that the correction functional equation is stationary i.e.

      0&0,0 1,31,21,1   xyxyxy nnn  So from Eq. (13), we get

  ,1,1  x   ,1,2  x and   ,1,3  x

Thus Eq. (13) becomes
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According to VIMHP, Eq. (14) can be writ ten as
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Now, comparing the co-efficient of like powers of p,
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Therefore, approximations to the solutions with the five terms are as follows:
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This is same as obtain by ADM in [22].
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Table1. Numerical values of these solution.

ix  ixy1  ixye 1  ixy2  ixye 2  ixy3  ixye 3

0 1.00008 0 1 0 0 0
0.1 1.22132 1.6535E-5 1.10516 2.9323E-6 0.110517 0
0.2 1.49186 5.3375E-5 1.22139 1.1211E-5 0.244275 0
0.3 1.82161 5.9740E-4 1.34974 1.1407E-4 0.404906 5.1165E-5
0.4 2.22249 3.1315E-3 1.49125 5.7298E-4 0.594560 2.7328E-4
0.5 2.70702 1.1341E-2 1.64676 1.9591E-3 0.823372 9.8853E-4
0.6 3.28813 3.2068E-2 1.81686 5.2497E-3 1.090460 2.8076E-3
0.7 3.97860 7.6660E-2 2.00184 1.1909E-2 1.402860 6.7609E-3
0.8 4.79050 6.6253E-1 2.20161 2.3929E-2 1.766030 1.1440E-2
0.9 5.73528 3.1445E-1 2.41576 4.3841E-2 2.185680 2.7962E-2

Graphical representation:

Fig. 1: Comparison of exact and approximate solution of ,1y

Fig. 2: Comparison of exact and approximate solution of ,2y
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Fig. 3: Comparison of exact and approximate solution of  y3.

Example 4.3 Consider a non-linear ordinary differential equation

,
1

3

3

xd

yd
y

xxd

yd
 (16)

subject to the boundary conditions

  ,00 y   ,10 y   .20 y

Considering    ,1 xyxy     ,2 xyxy  and    ,3 xyxy  we convert Eq. (16) in the system of non-

linear of three differential equation of order one, i.e.

    ,21 xyxy  (17)

   ,32 xyxy  (18)

     ,1
313 xyxy

x
xy  (19)

According to VIM, the correction functional for the Eq. (17),  (18) & (19) can be

writ ten as,
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The Lagrange multiplier   3,2,1,, ixi  can be identified via variational theory. i.e. the multiplier

should be chosen in such a way that the correction functional equation is stationary i.e.

      0&0,0 1,31,21,1   xyxyxy nnn  So from Eq. (20), we get

  ,1,1  x   ,1,2  x and   ,1,3  x

Thus Eq. (20) becomes
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Therefore, we get,
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Therefore, some computed approximations are as follows
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The closed form solution is

  .xexxy  (22)

This is the exact solution.
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4. Conclusion

In this paper, Variational Iteration Method using He’s polynomials has been implemented successfully to
find exact and approximate solutions of linear and nonlinear system of ordinary differential equations.

Three numerical examples have been presented to show that this technique is promising. All the

calculations are performed easily. Therefore, this method can be applied to many other complicated

nonlinear systems of ODEs and PDEs.
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