Research

Cytotoxic activity of crude extracts of *Dendrobium amoenum* and detection of bioactive compounds by GC-MS

Mukti Ram Paudel and Bijaya Pant*
Central Department of Botany, Tribhuvan University, Kirtipur, Kathmandu, Nepal

Abstract

*Dendrobium amoenum* is an epiphytic orchid used as tonic because it has many derivatives of phenols. The crude extract of this orchid has been shown to have antioxidant activity. The objectives of this research are to explore the cytotoxic activity of antioxidant-rich crude extract against the human cervical carcinoma and glioblastoma cell lines by MTT assay and to detect the compounds by GC-MS. Methanol (DAM) extract of *D. amoenum* showed high cell growth inhibition percentage against the tested cell lines. DAM extract showed high cytotoxic activity against HeLa cells (IC$_{50}$ – 110.22 µg/ml) and least activity against U-251 cells (IC$_{50}$ – 550.55 µg/ml). Thirteen compounds were detected and identified in the extract. Based on abundance, four major compounds detected were: (E)-13-docosenoic acid; oleic acid; 11-octadecenoic acid, methyl ester; and hexadecanoic acid, 2,3-dihydroxypropyl ester. The cytotoxic activity of DAM extract is probably due to the presence of these bioactive compounds, confirmation of which needs further investigation. The result also highlighted the potential of this orchid as the source of natural anticancer drug and to explore their isolation, identification and characterization.

Key-words: *Dendrobium amoenum*, extract, GC-MS, HeLa, MTT, U-251.

Introduction

*Dendrobium* is the second largest epiphytic orchid genus in Nepal comprising 30 species, distributed from tropical to temperate climatic regions (Rajbhandari 2014). Most of the *Dendrobium* species are widely used as traditional medicines (Ng et al. 2012; Xu et al. 2013). Among them, *Dendrobium amoenum* is mostly used as tonic and also for ornamental purposes (Pant and Raskoti 2013; Rajbhandari 2014). Compounds such as bibenzyl derivatives, phenols, phenanthrenes and sesquiterpenoids have been isolated from this species (Majumder et al. 1999; Majumder and Bandyopadhyay 2010; Venkateswarlu et al. 2002). Due to the presence of such compounds, the crude extract of this orchid has been shown to exhibit antioxidant activity (Paudel et al. 2015).

Elucidating the critical events associated with carcinogenesis provide an opportunity for preventing cancer development by inducing apoptosis, particularly with bioactive agent of traditional medicines (Gali-Muhtasib et al. 2015; Lowe and Lin 2000). Apoptosis induction in cancer cells is initially identified by morphological changes, including cell shrinkage, membrane blebbing, chromatin condensation and nuclear fragmentation. Apoptosis, is therefore, an important defense mechanism against cancer (Lowe and Lin 2000; Elmore 2007). Cervical carcinoma and glioblastoma cell lines were used for the present study. Cervical cancer is common form of cancer in woman’s uterus in virtually all developing countries and approximately 12% of cancers in women are due to cervical cancer (Joshi and Mishra 2013; Sherpa et al. 2015). Brain tumors, which account for 2% of all cancers, are most common childhood tumor after leukemia, constituting approximately 35% of all childhood malignancies and remain the leading cause of cancer-related deaths in children (Panth 2011). The cytotoxic activity of antioxidant-rich bioactive compounds present in crude extract of this orchid was screened by MTT assay (Mosmann 1983). The objectives of the present research are to explore the cytotoxic activity of crude extract of *D. amoenum* on human cervical carcinoma and glioblastoma cell lines and to detect the bioactive compounds present in it by GC-MS (Gas Chromatography and Mass Spectrometry). The result of this study may help to explore the pharmacological importance of this orchid in formulation of anticancer drug.

Materials and Method

**PLANT MATERIAL**

Stems of *D. amoenum* were collected from Daman of Makawanpur district, central Nepal at 1600 m asl. The plant species was identified with the help of literature and herbarium specimen. The stems were air-dried in the room temperature.

*Corresponding author: e-mail - bijayapant@gmail.com*
IN VITRO CYTOTOXIC ACTIVITY

Cytotoxic activity of *D. amoenum* crude extract was determined by using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colorimetric assay (Mosmann 1983; Sargent and Taylor 1989). The cytotoxic activities of the extract were determined against human cervical carcinoma and Human glioblastoma cell lines. Human glioblastoma cells (U-251) and human cervical carcinoma cells (HeLa) were cultured in RPMI (Roswell Park Memorial Institute) 1640 medium and incubated under 5% CO\textsubscript{2} at 37 °C for 48 hours to reach 80% confluence. The cells were harvested by gentle scraping with a cell scraper and resuspended in the medium. From the suspension, 5 × 10\textsuperscript{4} cells in 100 µl medium was dispensed into each well of 96-well cell culture plate and incubated under the same conditions of cell culture for 48 hours to allow adherence and growth of cells. The supernatants were gently aspirated, and 100 µl of extracts were added over a range of four cytotoxic concentrations (100–800 µg/ml) prepared in medium and incubated for 24 hours. Ten µl of 5 mg/ml MTT was added to every well and the plate was re-incubated for further 4 hours. The formazan crystals formed were dissolved in 100 µl DMSO (dimethyl sulfoxide). The plate was then read on a microplate reader (iMark\textsuperscript{TM}, Bio-Rad) at 595 nm. The percentage cell growth inhibition was calculated by using following formula:

% Cell growth inhibition = \[\left(1 - \frac{A(cs) - A(m)}{A(cc) - A(m)}\right) \times 100\%\]

where; \(A(cs)\) was mean absorbance of treated cells with test samples, \(A(cc)\) was mean absorbance of untreated cells, and \(A(m)\) was mean absorbance without cells.

A dose-response curve was plotted for each extract to calculate the inhibition of cell growth by 50% (IC\textsubscript{50}). IC\textsubscript{50} of extracts was calculated from the regression equation where abscissa represents the series of concentrations of extract and ordinate the triplicate percentage inhibition of cell growth.

GC-MS ANALYSIS

The analysis of the bioactive chemical constituents of different solvent extracts was done by using GCMS-QP2010 Ultra (Shimadzu Europa GmbH, Germany) with following conditions:

**GC condition:** column oven temperature 100°C; injection temperature 280°C; column flow rate 0.95 ml/min; pre-column pressure 68.3 kPa; split ratio of 0; high purity helium as the carrier gas.

**MS condition:** ionization mode EI; ion source temperature 280°C; interface temperature 280°C; detector gain mode relative and detector gain 0.91 kV; mass-charge ratio (m/z) 30 to 600.

Ions detected from the extracts were identified by the molecular formula generated by the use of standards and after through literature search.

STATISTICAL ANALYSIS

Data are expressed as mean of three analyses. IC\textsubscript{50} of extracts for cytotoxic activity was calculated by using appropriate linear/non-linear regression equation fitted on percentage cell growth inhibition activity of each extract at various concentrations with F-statistic at \(p\leq0.05\). All the analyses were done using statistical software R, version 3.1.2 (R core team 2016).

Results

CRUDE EXTRACT SHOWED IN VITRO CYTOTOXIC ACTIVITY

The percentage cytotoxic activity of *D. amoenum* is shown in Figure 1 (for HeLa cell line) and Figure 2 (for U-251 cell line). *D. amoenum* methanol (DAM) extract showed the highest percentage cytotoxic activity against the tested cell lines. The percentage of growth inhibition of extract-treated cells was increased with the increasing concentration of the extract. *D. amoenum* methanol (DAM) extract showed highest cytotoxic activity against HeLa cells (IC\textsubscript{50} = 110.22 µg/ml) than other extracts. Similary, *D. amoenum* ethanol (DAE) extract showed moderate cytotoxic activity against HeLa cells (IC\textsubscript{50} = 149.14 µg/ml; Figure 1). However, *D. amoenum* methanol (DAM) extract showed least cytotoxic activity against U-251 cells (IC\textsubscript{50} = 550.55 µg/ml; Figure 2). Besides DAM, other extracts did not show any response against U-251 cells. The addition of extract on the cell lines showed apoptosis of cells. It was seen after the addition of MTT on the extract-treated cells that...
produced the formazan crystals of HeLa cells (Figure 3) and U-251 cells (Figure 4).

**CHEMICAL CONSTITUENTS WERE DETECTED BY GC-MS**

Thirteen compounds present in DAM were detected using gas chromatography (GC) and identified through mass spectrometry (MS). The detected and identified compounds were listed in Table 1 with their retention time (RT), total content in the crude extract (in percentage) and observed mass-charge ratio (m/z). Based on abundance, four major compounds detected were: (E)-13-docosenoic acid (29.95%), oleic acid (26.95%), 11-octadecenoic acid, methyl ester (20.06%) and hexadecanoic acid, 2,3-dihydroxypropyl ester (10.04%) (Table 1).

---

**Figure 2.** The percentage U-251 cells growth inhibition by DAM extract and its IC$_{50}$ (DAM – *D. amoenum* methanol).

**Figure 3.** Apoptosis of HeLa cells after addition of methanol extract (200 µg/ml): (a) HeLa cells before addition of extract, (b) formazan crystals in cells treated with the extract after addition of MTT, and (c) dead HeLa cells.

**Figure 4.** Apoptosis of U-251 cells after addition of methanol extract (800 µg/ml): (a) U-251 cells before addition of extract, (b) formazan crystals in cells treated with the extract after addition of MTT, and (c) dead U-251 cells.
Studies have shown that the extract induced the apoptosis of apoptotic bodies, indicating that the extract induced the apoptosis (Lowe and Lin 2000; Pandey et al. 2011; Kim et al. 2012; Gali-Muhtasib et al. 2015). Studies have shown that phenolic derivatives are responsible for the induction of apoptosis in cancer cells (Prasad and Koch 2014; Chen et al. 2015; Milutinovic et al. 2015).

The cytotoxic activity of DAM extract of *D. amoenum* is due to the presence of several bioactive compounds, confirmation of which needs further investigation. The result also highlighted the potential of this orchid as the source of natural anticancer drug and to explore their isolation, identification and characterization.

### Discussion

Cytotoxic activity of the crude extract was observed against the cervical carcinoma and glioblastoma cell lines by MTT assay. The cell growth inhibition effect was strengthened with the increase in crude extract concentrations. The susceptibility of cells to the extract exposure was characterized by IC50 values. Considering the IC50 values, the methanol extract has better cytotoxic effect than that of other extract types. This indicates that the methanol extract is more potent on the cell lines used.

The antitumor and anticancer activities of crude extracts of *Dendrobium* were explained in previous studies (Devi et al. 2009; Lam et al. 2015; Shrestha et al. 2015; Sun et al. 2016; Paudel et al. 2017). In our previous study, we quantified the total phenolic and flavonoid contents in the crude extract of *D. amoenum* (Paudel et al. 2015). In the present study, we further explored and detected 13 compounds from the crude extracts by GC-MS analysis. Compounds, like bibenzyl derivatives, phenols, phenanthrenes and sesquiterpenoids are known to be present in *D. amoenum* (Majumder et al. 1999; Venkateswarlu et al. 2002; Majumder and Bandyopadhyay 2010). The cytotoxic activity of *D. amoenum* against the cervical carcinoma and glioblastoma cell lines has been therefore attributed to the bioactive compounds present in the crude extracts of this orchid.

Many chemotherapeutic drugs and folk medicinal plants exert their anticancer effect by inducing cell apoptosis (Chen et al. 2008; Prasad and Koch 2014; Peng et al. 2017). The cervical carcinoma and glioblastoma cells treated with crude extract showed morphological changes, such as reduced size and cell volume, cell shrinkage, membrane blebbing, chromatin condensation, nuclear fragmentation and formation of apoptotic bodies, indicating that the extract induced the apoptosis (Lowe and Lin 2000; Pandey et al. 2011; Kim et al. 2012; Gali-Muhtasib et al. 2015).

### Acknowledgments

We are thankful to Department of Neurosurgery of Kagoshima University, Japan for providing U-251 cell lines and Everest Biotech Pvt. Ltd., Nepal for providing HeLa cell lines; and University Grants Commission (UGC), Nepal for financial support. We thank Dr. Suresh Kumar Ghimire for his critical review, language editing and suggestion in the earlier version of the manuscript.

### References


© Central Department of Botany, Tribhuvan University, Botanica Orientalis – Journal of Plant Science (2017) 11: 38–42

<table>
<thead>
<tr>
<th>S.N.</th>
<th>Compound name</th>
<th>RT (min)</th>
<th>Content %</th>
<th>Mass-charge ratio (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(E)-13-Docosenoic acid</td>
<td>14.60</td>
<td>29.95</td>
<td>55.05</td>
</tr>
<tr>
<td>2</td>
<td>Oleic acid</td>
<td>12.19</td>
<td>26.95</td>
<td>41.05</td>
</tr>
<tr>
<td>3</td>
<td>11-Octadecenoic acid, methyl ester</td>
<td>11.54</td>
<td>20.06</td>
<td>55.05</td>
</tr>
<tr>
<td>4</td>
<td>Hexadecanoic acid, 2,3-di-hydroxypropyl ester</td>
<td>13.15</td>
<td>10.04</td>
<td>43.05</td>
</tr>
<tr>
<td>5</td>
<td>n-Hexadecanoic acid</td>
<td>10.87</td>
<td>5.98</td>
<td>43.05</td>
</tr>
<tr>
<td>6</td>
<td>2-Undecenal (E)-</td>
<td>16.87</td>
<td>1.73</td>
<td>43.05</td>
</tr>
<tr>
<td>7</td>
<td>9-Octadecenamide, (Z)-</td>
<td>13.87</td>
<td>1.48</td>
<td>59.10</td>
</tr>
<tr>
<td>8</td>
<td>Tetradecanoic acid, 12-methyl-, methyl ester</td>
<td>11.67</td>
<td>0.82</td>
<td>43.10</td>
</tr>
<tr>
<td>9</td>
<td>Pentadecanoic acid, 14-methyl-, methyl ester</td>
<td>10.32</td>
<td>0.80</td>
<td>74.10</td>
</tr>
<tr>
<td>10</td>
<td>7-Nonenamide</td>
<td>10.95</td>
<td>0.41</td>
<td>59.05</td>
</tr>
<tr>
<td>11</td>
<td>Cyclopropane pentanoic acid, 2-undecyl-, methyl ester, trans-</td>
<td>12.67</td>
<td>0.37</td>
<td>43.10</td>
</tr>
<tr>
<td>12</td>
<td>Di-alpha-L-xylofuranose,1,2’,2’,1’-dianhydride, 4,4’,5,5’-tetradeoxy-4,4’-bis(methylamino)-</td>
<td>15.16</td>
<td>0.37</td>
<td>55.10</td>
</tr>
<tr>
<td>13</td>
<td>Cholesterol 3-O[(2-acetoxy)ethyl]-</td>
<td>17.56</td>
<td>0.37</td>
<td>43.10</td>
</tr>
</tbody>
</table>


