## Nexus between Public Expenditure and Economic Growth in Nepal

Prof. R. K. Shah, Ph.D.<sup>1</sup> Tara Prasad Bhusal<sup>2</sup>

### **Abstract**

The article attempts to identify the relationship between public expenditure and economic growth in Nepal. Public expenditure is a fundamental element for the economic growth. On employing, ARDL bound test on data set for the period of 1975-2016, it is found that there in a long-run relationship between the public expenditure and economic growth. The bound test and error correction term clearly specify that there exists a long run relationship between government expenditure and economic growth in Nepalese economy. From the empirical study, it is found that government expenditure has significant influence on real GDP, which is proxy for economic growth. The study confirms the Keynesian theory of making government expenditure to boost economic growth of Nepal.

Key Words: Economic growth, Public expenditure, Stationary, Unit root test, ARDL

### Introduction

Public expenditure refers to the expenses undertaken by the government authorities for the functioning of the government. It refers to the expenditure incurred by the different layers of government, that is, central government, state government and local government. It is necessary to address the common wants of the people, which is merely possible to achieve with individual or social efforts. Especially, public expenditure is required to create social-overhead capital, internal peace and justice and even to maintain external affairs. It is essential to increase the welfare of society as a whole.

Public expenditure is required for the satisfaction of collective needs of the citizens or for promotion of economic and social welfare. The development functions include education, public health, social security, irrigation, canal, drainage, roads and buildings etc. These functions of social welfare have increased public expenditure to a greater extent (Lekhi, 2011).

Public expenditure as a financial mechanism provides a helping hand to the government to realize its core economic and social objectives. The traditional economist had confined the functions of the state mainly for providing protection to the people from internal rebellion and foreign aggression. It is also required for the administration of justice and provision of public works whereas modern economist conceive that public expenditure has a positive role to achieve the goal of maximum social welfare and much essential in correcting market failure and providing public goods (Kennedy, 2012).

Government expenditure is one of the important determinants of economic growth. However, the growth of economy depends on the size, spending capacity, and effective use

<sup>1.</sup> Dr. Shah is Professor of Economics in Central Department of Economics, TU

<sup>&</sup>lt;sup>2</sup>. Bhusal is an Associate Professor of Economics in Central Department of Economics, TU

of capital expenditure in development process. The government should focus on law and order and fair and transparent use of government investment avoiding corruption to acquire the expected growth of the economy (Sharma, 2012).

Regarding the concept, there always comes the argument among the scholars in relation to the relationship between government expenditure and economic growth. Some are for and some are against of this concept. Scholars' supporting the Keynesian view and argues that an increase in the portion of government expenditure boosts the economic growth where as scholars supporting the Wagnerians view and argues that an increase in the government expenditure may retard the economic growth.

To support the Keynesian view, government expenditure on health, education, agriculture, transportation, communication, mining and energy etc. having linkage effects fosters the private investments and enhances the economic growth in a positive direction. This view may not be applicable through Wagnerian concept. According to this concept, to increase public expenditure, government either must increase tax rate or must use public borrowing. As it is known that the increasing tax rate reduces the income tendency of the business sector and may reduce the private investment expenditure by curtailing the employment rate and GDP in a row. While going for the public borrowing, it may crowd-out private investment, consequently reducing the economic growth rate.

Despite the increase in growth rate of public expenditure, lower growth rate of GDP is the most common problem faced by most of the developing countries like Nepal. The real public expenditure was Rs. 11861.6 million in 1975 and Rs. 207469.4 million in 2016 (Appendix A). Throughout the study period it is observed that the annual average economic growth rate is confined to 4.1 percent, with 8.79 percent as the highest growth rate ever achieved in 1984 and with less than 1 percent in 2016. It shows the volatility in the economic growth rate of Nepalese economy. The annual average growth rate of real recurrent expenditure is observed to be 9.8 percent and the annual average growth rate of real capital expenditure is subjected to be 6.74 percent, in a meaning that, the total annual growth rate of public expenditure is observed to be 7.61 percent. However, the annual average growth rate of the expenditure seems to be higher than that of the annual average growth rate of GDP, that is, increased public expenditure has not shown proportionate growth rate in GDP. As per the prevailing Keynesian theory, there must be the multiplier effect of public expenditure on economic growth, with the meaning that government injection leads to accelerate economic growth.

Despite such higher growth rate of public expenditure, Nepalese economy has not been able to achieve the consistent and higher growth rate, the resultant factor for this case may be political instability, corruption, unstable government and bad governance etc., which are blamed mostly. However, there are many empirical works showing the positive relationship between public expenditure and economic growth. In this light, the study regarding the relationship between public expenditure and economic growth for Nepalese economy is necessary. This study will empirically reinvestigate whether there exists relationship between public expenditure and economic growth, if exists then in which direction.

This study tries an empirical investigation to relate the public expenditure with economic growth by taking data of the period (1976-2015). This study tries to test Keynesian hypothesis, which advocates that public expenditure can positively affect the economic growth. Similarly Wagner's hypothesis advocates that the rise in per capita GDP will increase in public expenditure. The study attempts to identify and address the following research question: Is there any significant relationship between public expenditure and economic growth in Nepal?

### **Review of Literature**

Attari and Javed (2013) used ARDL model to show the long and short run relationship between rate of inflation, economic growth and government expenditure on time series data of Pakistian's economy for the period of 1980-2010. It is found that there is a long run relationship between rate of inflation, economic growth and government expenditure. This study concludes that in the short run, the rate of inflation has not affected the economic growth whereas government expenditure affects the economic growth and further shows unidirectional causality between rate of inflation and economic growth and economic growth and government expenditure.

Tsaurai and Odhiambo (2013) found that there is a causal relationship between government expenditure and economic growth using ARDL bound testing approach for Zimbabwe by employing time-series data from 1980 to 2011. Their study found the unidirectional causal flow from economic growth to government expenditure for both short and in the long run. However, casual flow from government expenditure to economic growth has been detected in short-run.

Menyah and Rufael (2013) using ARDL bound test approach with co- integration and causality tried to investigate the long run and causal relationship between public expenditure and national income of Ethiopia for the period 1950-2007 and found that bounds test approach to co-integration indicating a long run co-integrating relationship between public expenditure and GDP. Here, Wagnerian hypothesis is supported showing the unidirectional causality running from GDP to government expenditure.

Kunu and Basar (2015) used ARDL bound testing to show the long-run relationship between public expenditure and economic growth and found that there is both short and long-run relationship between the public expenditure and economic growth in positive way in Turkish economy. This paper also suggests the prevalence of Keynesian approach.

Ogunmuyiwa (2015) with the analysis of time-series data of 38 years using Box-Jekins OLS methodology and Johansen co-integration found positive and significant impact of public expenditure on economic growth. The study on policy implication suggests investing heavily in public infrastructure for the desired growth and development of the country.

Hasnul and Gifari (2015) carried an empirical investigation to establish the casual relationship between public expenditure and economic growth in Malaysian economy. Government expenditure has been disaggregated into the government operation and development expenditure. Using OLS method of 45 years of time-series data, the study found negative correlation between government expenditure and economic growth. In disaggregated form, the study further found that housing sector expenditure and development expenditure significantly contribute to a lower economic growth. Whereas, expenses on defense, health care and operating expenditure do not show any impact on the economic growth. Selim (2015) found public spending on education, health, defense, current and public investment spending having positive effect on Turkish economy by analyzing time-series data of 42 years with validating the result with Zivot- Andreus unit root test and Pesaran bound test.

Wang, Peculea and Xu (2016) employed ARDL approach and bound test based on UCEM approach to show the relationship between public expenditure and economic growth of Romanian economy. The study further advocated that there is unidirectional long run causal relationship from government expenditure to economic growth in Romania.

Idris and Bakar (2017) used ARDL bound test to analyze the relationship between public sector spending and economic growth in Nigeria. The empirical evidence from the ARDL estimation indicates the existence of positive and long run equilibrium relationship between economic growth and government expenditure in Nigeria. This result is consistent with the Keynesian philosophy and several empirical literatures, hence establishing a stable relationship between the variables in Nigerian economy.

Timilsina (2010) carried an empirical study using simple regression on time series data of 16 years and found that public expenditure in Nepal has been growing over years with an average growth rate of 11.56 percent on study period and positive impact of public expenditure especially on public investment to be positive with GDP.

Mainali (2012) on employing co-integration analysis and ECM to show long run and short-run impact of government expenditure on economic growth and noticed that the share of capital expenditure is on decreasing trend mainly after 1990s but rapid increase on loan repayment and interest payment. This study supported the previous research findings in the sense that the government expenditure is growth promoting with the result of co-integration and ECM to show the positive effect of government expenditure on GDP.

Sharma (2012) found government expenditure as one of the important determinants of economic growth and stressed that growth of economy depends on the size, spending capacity and effective use of capital expenditure in the economic growth. But due to political instability, internal inability and weak governance capital expenditure is unable to influence the growth and development.

Kharel (2012) carried an empirical study to develop a macroeconomic forecasting model for a plan period 2010/11 to 2012/13 using annual data from 1992/93 to 2009/10 and found that fiscal policy, particularly government capital expenditure affects economic growth positively and crowds-in private investment.

Subedi (2013) on employing OLS method for the period of 1990-2011 has found positive relationship between aggregate level of GDP and public expenditure using simple regression, where regular expenditure is highly responsive to GDP.

Gaire (2014) found the empirical results from the Johansen co-integration tests showing the long-run relationship between government and real GDP, private consumption and gross fixed capital formation. However, Granger causality test revealed that there is no causality between the government expenditure and real GDP as well as private consumption for the review period. Finally, the study stressed that Keynesian hypothesis is not valid for Nepal.

Thapa (2015) carried an empirical investigation to show the relationship between government expenditure and growth by using ARDL and co-integration test. In this study, the time-series data of 37 years are taken. It is found that the trend of real capital expenditure is higher than real recurrent expenditure in initial years, but later real recurrent expenditure is larger than real capital expenditure and supports Keynesian postulate and Wagner's postulate both, that is, there is both long-run and short-run relationship between government expenditure and economic growth.

Aryal (2015) described empirical results using simple regression analysis on the timeseries data of 24 years as decreasing trend of regular expenditure after 1998 and positive relationship between the aggregate level of GDP and public expenditure (total, regular and development). Among total expenditure, regular expenditure and development expenditure, GDP is found to be highly responsive to the development expenditure and lesser responsive to regular expenditure.

### **Data and Methodology**

### Sources of Data

The empirical study is based on the annual time series data ranging from 1975 to 2016, which comprises 42 observations. The sources from which the data are taken for this study are: Economic Survey (Various Issues), published by Ministry of Finance, Quarterly Economic Bulletin and A Handbook of Government Finance Statistics (GFS) published by NRB. The data series of GDP, GDP deflator and real GDP are extracted from *Economic Survey* (FY 2010/11) and *Economic Survey* (FY 2015/16). Also, data series of recurrent expenditure and capital expenditure are extracted from *A Handbook of Government Finance Statistics* (March, 2017)

### **Model Specification**

This research work aims to evaluate the relationship between the economic growth and public expenditure in Nepal. In order to meet the research objectives, this study has employed the following functional model based on the different time series literature on the expenditure growth nexus. The specified model is as follow:

$$RGDP = f(RREXP, RCEXP)$$
 .....(1)

Where, RGDP, RREXP and RCEXP refer to real gross domestic product, real recurrent expenditure, and real capital expenditure respectively. The functional form explains that RGDP is dependent to or influenced by real recurrent expenditure and real capital expenditure. Following equation (1) in the form of log linear model is further extended to:

$$LRGDP = \beta_0 + \beta_1 LRREXP + \beta_2 LRCEXP + U_t \qquad (2)$$

Where,  $\beta_0 > 0$ ,=intercept

 $\beta_1$  and  $\beta_2$  are elasticity coefficients of real recurrent expenditure and real capital expenditure respectively and  $U_t$  is the error term. Each coefficient  $\beta_1$  and  $\beta_2$  are expected to be positive. It means, as the rate of recurrent and capital expenditure increases, it brings positive change in the economic growth.

### Description of the Variables

The detail of the entire variables used in the formulation of equation (1) and (2) and other associated variables in the study are presented in the below:

Variables Variable Details Real GDP which is inflation adjusted gross domestic product (GDP) obtained **RGDP** dividing nominal GDP by GDP Deflator (FY 2000/01 = 100). Real recurrent expenditure which is defined as inflation adjusted government **RREXP** recurrent expenditure adjusted by CPI. Real capital expenditure which is defined as inflation adjusted government **RCEXP** capital expenditure adjusted by CPI. CPI Consumer price index, base year 2014/15( i.e., FY: 2014/2015=100) **LRGDP** Logarithm of real gross domestic product. LRREXP Logarithm of real recurrent expenditure. LRCEXP Logarithm of real capital expenditure.

**Table 1: Variable Details** 

### **Econometric Tools**

In this study, different time series econometric tools are used.

### **Unit Root Test**

To check the stationary of the time series data, unit root test was performed. The study has employed Augmented Dickey-Fuller (ADF) test to test the stationary (or non-stationary) of the variables. While conducting the Dickey-Fuller test, it was assumed that the error term  $u_t$  was uncorrelated. However, in case the  $u_t$  is correlated, Dickey and Fuller have developed another test, known as the Augmented Dickey-Fuller test. The ADF test here consists of estimating the following regression.

$$\Delta Y_{t} = \beta_{1} + \beta_{2}t + \delta Y_{t-1} + \sum_{i=1}^{m} \alpha_{i} \Delta Y_{t-i} + \varepsilon_{t}$$
 (3)

Where,  $\varepsilon_t$  is a pure white noise error term and  $Y_t$  is any variable used in this study, that is, LRGDP,LRREXP and LRCEXP. Δ indicates the first difference operator and m is the length of lag, which ensures residuals to have white noise empirically. The null hypothesis is that  $Y_t$ has a unit root, that is  $H_0$ :  $\delta = 0$  and is rejected if the calculated ADF statistic is above the critical value implying that  $Y_t$  has no unit root or  $Y_t$  is stationary (Bhattari, 2014).

### ARDL Approach to Co-integration

ARDL models have been used to examining long-run and co integrating relationships between variables (Pesaran & Shin, 1999). To empirically analyze the long run relationship and dynamic interaction among variables under study, the model has been estimated by using Autoregressive Distributed Lag (ARDL) approach to co integration, developed by Pesharan and Shin (1999) and Pesaran, Shin and Smith (2001). Due to the low power and other problems associated with other methods of co integration test, the ARDL approach to co integration has become popular in recent years.

The ARDL co-integration approach has numerous advantages in comparison to other co integration methods such as Engle and Granger (1987), Johansen (1988), and Johansen and Julius (1990) procedures.

If  $Y_t$  and  $X_t$  variables are co integrated, that is, there is a long-run equilibrium relationship between them, there may be disequilibrium in the short run. Thus, the error term

 $u_t = Y_t - \beta_0 - \beta_1 X_t$  in the regression equation  $Y_t = \beta_0 + \beta_1 X_t + u_t$  is called the equilibrium error. This error term can be used to tie the short-run behavior of  $Y_t$  to its long-run value. The Error Correction Models (ECM) first used by Sargan and later popularized by Engle and Granger corrects for disequilibrium. The Granger Representation Theorem says that if two variables  $Y_t$  and  $X_t$  are co-integrated, then the relationship between the two can be expressed as Error Correction Modeling (Bhatta, 2012).

The error correction representation of ARDL of equation (3) is:

$$\Delta LRGDP_{t} = \lambda_{0} + \sum_{i=1}^{n} \lambda_{1i} \Delta LRGDP_{t-i} + \sum_{i=0}^{n} \lambda_{2i} \Delta LRREXP_{t-i} + \sum_{i=0}^{n} \lambda_{3i} \Delta LRCEXP_{t-i} + \lambda_{4}ECM_{t-1} + \varepsilon_{t}$$
 .....(4)

Based on the long run coefficients, the estimation of dynamic error correction is carried out as depicted in equation (4). Here, the coefficients  $\lambda_{1i}$ ,  $\lambda_{2i}$ , and  $\lambda_{3i}$  provide the short run dynamics of the model;  $\lambda^4$  is the speed of adjustment parameter which indicates the divergence/convergence towards the long run equilibrium. A positive coefficient indicates a divergence whereas negative coefficient shows convergence. The term ECM is derived as the error term from the corresponding long-run model from equations (3).

**Null Hypothesis (H<sub>0</sub>):**  $\lambda_1 = \lambda_2 = \lambda_3 = 0$ , that is, there exist no co integration or long run relationship.

Alternative Hypothesis (H<sub>1</sub>):  $\lambda_1 \neq \lambda_2 \neq \lambda_3 \neq 0$ , that is, there exist co integration or long run relationship.

Equation (3) of this study is unrestricted regression equation. To test the co integration, null hypothesis is set as (Ho):  $\lambda 1 = \lambda 2 = \lambda 3 = 0$ . With this our model becomes restricted so we need to drop the co integrating variable from equation (3)

So, the restricted regression equation is obtained as,

$$\Delta LRGDP_{t} = \gamma_{0} + \sum_{i=1}^{n} \gamma_{1i} LRGDP_{t-i} + \sum_{i=0}^{n} \gamma_{2i} LRREXP_{t-i} + \sum_{i=0}^{n} \gamma_{3i} LRCEXP_{t-i} + \varepsilon_{t} \cdots (5)$$
Pesaran, Shin and Smith(2001) provided the two sets of critical values in which lower

Pesaran, Shin and Smith(2001) provided the two sets of critical values in which lower critical bound assumes that all the variables in the ARDL model are I(0), and the upper critical bound assumes I(1). If the calculated F-statistics is greater than the appropriate upper bound critical values, the null hypothesis is rejected implying co-integration. If such statistics is below the lower bound, the null cannot be rejected, indicating the lack of co-integration. If, however, it lies within the lower and upper bounds, the results is inconclusive (Budha, 2013).

### **CUSUM Test**

The CUSUM test (Brown, Durbin & Evans, 1975) is based on the cumulative sum of the recursive residuals. This option plots the cumulative sum together with the 5 percent critical lines. The test finds parameter instability, if the cumulative sum goes outside the area between the two critical lines.

The CUSUM test is based on the statistic:

$$W_t = \sum_{r=k+1}^{t} \omega_r / s \tag{6}$$

for t = k+1,..., T, where  $\omega$  is the recursive residual and s is the standard error of the regression of the recursive residuals  $W_t$ . If the  $\beta$  vector remains constant from period to period, E (W<sub>t</sub>) = 0, but if  $\beta$  changes, W<sub>t</sub> will tend to diverge from the zero mean value line. The significance of any departure from the zero line is assessed by reference to a pair of 5

percent significance lines, the distance between which increases with t. The 5 percent significance lines are found by connecting the points:

$$\left[k, \pm -0.948 (T-k)^{1/2}\right]$$
 and  $\left[T, \pm 3 \times 0.984 (T-k)^{1/2}\right]$ 

Movement of W<sub>t</sub> outside the critical lines is suggestive of coefficient instability (Eviews User's Guide, 2015).

### 3.9.2 CUSUMSQ Test

The CUSUM of squares test (Brown, Durbin & Evans, 1975) is based on the test statistic:

$$S_{t} = \left(\sum_{r=k+1}^{t} w_{r}^{2}\right) / \left(\sum_{r=k+1}^{T} w_{r}^{2}\right) \qquad (7)$$

The expected value of  $S_t$  under the hypothesis of parameter constancy is:

$$E(S_t) = (t-k)/(T-k)$$
 .....(8)

which goes from zero at t = k to unity at t = T. The significance of the departure of S from its expected value is assessed by reference to a pair of parallel straight lines around the expected value.

The CUSUM of squares test provides a plot of  $S_t$  against t and the pair of 5 percent critical lines. As with the CUSUM test, movement outside the critical lines is suggestive of parameter of variance instability.

The cumulative sum of squares is generally within the 5 percent significance lines, suggesting that the residual variance is somewhat stable(E-views User's Guide, 2015).

### **Data Presentation and Discussions**

### **Unit Root Test**

The recent literature on co-integration and stationary testing provides a more rigorous framework for avoiding spurious regression while retaining long run information about the equilibrium relationship in the variables at levels. The rationale behind co-integration is that economic results are legitimate only when time series are stationary. Time series data are, therefore, tested to determine the degree of differencing before they achieve stationary (Odhiambo, 2013).

Now it is necessary to test the order of integration, which is a most to fulfill the purpose of this research work. In order to investigate the order of integration among the variables, the study has adopted the Augmented Dickey- Fuller (Dickey & Fuller, 1981) test which checks if the variables are integrated of I(0) or I(1) or I(2). Table 2 presents the result of ADF unit root test.

The tools of unit root test i.e. ADF test is adopted for all the variables by making null hypothesis as 'there is presence of unit rot' (i.e. presence of non-stationary) against the alternative hypothesis 'the series is stationary'. If the absolute computed value exceeds the absolute critical value, then we reject the null hypothesis and conclude that the data series is stationary and vice-versa.

Level First Difference Decision Variables Intercept **Intercept and Trend Intercept and Trend** Intercept -0.795-1.06-5.862\* -5.85\* LRGDP I(1)0.809 0.925 0.0000.000-2.478-2.604 -5.212\* -5.055\* **LRCEXP** I(1) 0.28 0.128 0.0001 0.001 -0.231 -3.292 -7.063\* -6.956\* LRREXP I(1) 0.081 0.000 0.926 0.000

Table 2: Augmented Dickey-Fuller (ADF) Test for Unit Root

Note: an asterisk \* represents the rejection of null hypothesis at 1% level of significance.

Table 1 shows that the result of ADF statistics to test the null hypothesis that there is unit root (or non-stationary data) against the alternative hypothesis that there is no unit root. To detect the unit root, it is necessary to compare ADF statistics with that of test critical values of each variable. If the absolute value of ADF statistics is found greater than that of absolute critical values, then that variable is considered to have no unit root. Meaning that, the variable is stationary.

The variables LRGDP, LRREXP and RCEXP have unit root at their level but after first difference they achieved stationary (i.e., p-value < 5 percent). Thus, the unit root test showed that no variables are integrated of order two I(2) as such, the ARDL model could be applied without any hesitation.

### Co-integration Analysis

Testing the order of integration of each variable is the pre-requisite to apply the ARDL model. Only after completing this task, one can proceed for testing the properties of ARDL to co-integration model. The first and foremost task is to conduct the bound testing approach with the null hypothesis that there is no long run relationship between the variables. This bound testing approach uses the standard version of F-test, which is also known as Wald test. This test helps us to identify whether all variables which are used in this study has long run relationship or not (Subedi, 2016). The computed result of bound test is presented in Table 3.

ARDL Bounds Test Null Hypothesis: No Long Run Relationship Exist Value **Test Statistic** K 9.864205 F-statistic Critical Value Bounds I0 Bound I1 Bound Significance 10% 4.19 5.06 5% 4.87 5.85 2.50% 5.79 6.59 1% 6.34 7.52

Table 3: Result of ARDL Bounds Test

Note: The relevant critical value bounds are (with intercept and no trend, with 2 repressors). If the statistic lies between the bounds, the test is inconclusive. If it is above the upper bound, the null hypothesis of no level effect is rejected. If it is below the lower bound, the null hypothesis of no level effect cannot be rejected.

The result of table 2 shows that the calculated F-statistics for the model is higher than upper bounds (critical value) even at 1 percent level of significance. So, the null hypothesis of no co-integration is rejected, implying that the long run relationship among the variables under study is existed. Further, equation (3) as presented in chapter three is estimated using Eviews – 9, selecting appropriate lag order. As the data are annual and there are only 39 observations, maximum order is set to 3 following Pesaran and Shin (1999). With this maximum lag order, the adjusted sample period for analysis becomes 1978 to 2016. According to Pesaran and Shin (1999), AIC and SBC perform relatively well in small samples although SBC is slightly superior to AIC. However, Akaike Information Criterion has been used in this study in all co-integration equation.

**Table 4: Short Run Error Correction Representation** 

| Error Correction Rep   | presentation for the Selecte | d ARDL Model     |               |        |
|------------------------|------------------------------|------------------|---------------|--------|
| ARDL (3,2,3) selected  | ed based on Akaike Inform    | nation Criterion |               |        |
| Dependent Variable     | is LRGDP                     |                  |               |        |
| 39 observations used   | for estimation               |                  |               |        |
| Variable               | Coefficient                  | Std. Error       | t-Statistic   | Prob.  |
| D(LRGDP(-1))           | -0.114102                    | 0.156715         | -0.72809      | 0.4728 |
| D(LRGDP(-2))           | -0.536439**                  | 0.168926         | -3.175583     | 0.0037 |
| D(LRREXP)              | -0.077666***                 | 0.0382           | -2.033128     | 0.052  |
| D(LRREXP(-1))          | 0.078664***                  | 0.039553         | 1.988799      | 0.0569 |
| D(LRCEXP)              | -0.010231                    | 0.016045         | -0.637649     | 0.5291 |
| D(LRCEXP(-1))          | 0.011404                     | 0.022633         | 0.503876      | 0.6184 |
| D(LRCEXP(-2))          | -0.041466**                  | 0.016963         | -2.44449      | 0.0213 |
| D(@TREND())            | 0.008829                     | 0.002388         | 3.697591      | 0.001  |
| CointEq(-1)            | -0.352054                    | 0.093833         | -3.751927     | 0.0008 |
| Cointeq =LRGDP - (-0.2 | 2117*LRREXP + 0.1759*I       | RCEXP + 11.4125  | + 0.0251*@TRE | END)   |

Note: Double asterisks \*\* denote the significance of coefficient at 5% level of significance. Triple asterisks \*\*\* denote the significance of coefficient at 10% level of significance.

**Table 5:Diagnostic Tests** 

| Diagnostic Tests             |              |                 |               |                       |
|------------------------------|--------------|-----------------|---------------|-----------------------|
| Tests                        | F-Statistics | Obs* R- Squared | Prob F(1,26)  | Prob. Chi- Square(1)  |
| Serial correlation (LM Test) | 0.017052     | 0.025561        | 0.8971        | 0.873                 |
|                              |              |                 |               |                       |
|                              | F-Statistics | Obs* R- Squared | Prob F(11,27) | Prob. Chi- Square(11) |
| Heteroscedasticity ( B-P-G)  | 0.661436     | 8.278614        | 0.7609        | 0.6881                |
|                              |              |                 |               |                       |
| Normality                    | J-B          | Stastistics     | F             | Probability           |
|                              | 2            | .945453         |               | 0.229299              |

The error correction term is highly significant at 1 percent and negative which is appropriate sign for it. A coefficient of -0.352054 is the indication of the fact that approximately 35.2 percent of all disequilibria caused by the preceding year's shock converges back to the long- run equilibrium in the one period.

The short-run coefficients reveal that there is no strong significant relationship between the real GDP and the explanatory variables under the study. The coefficient of second lag value of LRGDP is statistically significant at 5 percent level of significance but have negative sign. In addition, the LRREXP and second lag of LRCEXP is also statistically significant but have negative sign. However, the coefficient of first lag value of LRREXP is positive with weak significance.

The result of ARDL (3, 2, 3) estimation on the basis of Akike Information Criterion has

 $R^2$  = 0.99 and  $\overline{R}^2$  = 0.99 is very high and almost 60 percent of the variables seem to be significant. The diagnostic test clears that the model passes all of the tests i, e., the null hypothesis of no serial correlation, no heteroscedasticity and normality of the residuals are easily accepted at 5 percent level of significance

The estimated long run model of the corresponding ARDL (3, 2, 3) model can be written as follows:

The long-run coefficient are presented below in table 5 which reveals that the coefficient of real capital expenditure (LRCEXP) is positive and statistically significant which depicts positive impact of real capital expenditure on real gross domestic product (RGDP). The coefficient of LRCEXP is 0.175902, and it explains that 1 percent increase in government capital expenditure leads to RGDP growth by 0.175 percent in the long run, which is similar to Keynesian and Wagner's hypothesis of public expenditure. Further, this finding is similar to Kunu and Basar (2015) and Idris and Bakar (2017). However, the coefficient of LRREXP is almost insignificant implying no long run relationship between real GDP growth and recurrent expenditure in Nepal. It may be because of the sustained increase in general price level of consumer goods in the economy. In other words, even though the government increases recurrent expenditure (salary and wages and other daily expenses) in nominal term, it would not guarantee the rise in productive capacity of an economy if inflation is not controlled. In this aspect, recurrent expenditure may not contribute to the growth of an economy.

**Table 6: Estimated Long Run Coefficients** 

| Estimated Long  | Run Coefficient using  | ; ARDL Approach       |             |        |
|-----------------|------------------------|-----------------------|-------------|--------|
| ARDL (3,2,3) s  | elected based on Akike | e Information Criteri | ion         |        |
| Dependent Vari  | able is LRGDP          |                       |             |        |
| 39 observations | used for estimation    |                       |             |        |
| Variables       | Coefficient            | Std. Error            | t-Statistic | Prob.  |
| LRREXP          | -0.211681              | 0.124897              | -1.694845   | 0.1016 |
| LRCEXP          | 0.175902               | 0.04917               | 3.577419    | 0.0013 |
| С               | 11.412479              | 1.364742              | 8.362371    | 0.0000 |
| @TREND          | 0.02508                | 0.00449               | 0.585261    | 0.0000 |

Note: An asterisk \*denotes the significance of the coefficient at 1% level of significance.

The short run dynamics of the model has been examined by an error correction model as presented in equation (4). The long run coefficients are used to generate the error correction term, which is obtained as

```
Co int eq = LRGDP - (-0.2117 * LRREXP + 0.1759 * LRCEXP + 11.4125 + 0.0251 @ TREND)
```

### Stability Tests

Finally, the stability of the long run coefficients together with the short run dynamics is examined. In doing so, Pesaran and Pesaran (1997) have been followed and the CUSUM and CUMSUMSQ tests proposed by Brown, Durbin, and Evans (1975) have been applied. These tests are applied to the residuals of the model following Pesaran and Pesaran (1997). Specifically, the CUSUM test makes use of the cumulative sum of recursive residuals based on the first set of n observations and is updated recursively and plotted against break points. If the plot of CUSUM statistics stays within the critical bounds of 5 percent level of significance level represented by a pair of straight lines drawn at the 5 percent level of the significance whose equations are given in Brown, Durbin, and Evans (1975), the null hypothesis that all coefficients in the error correction model are stable cannot be rejected. If either of the lines crosses, the null hypothesis of coefficient constancy can be rejected at the 5 percent level of significance. A similar procedure is used to carry out the CUSUMSQ test, which is based on the squared recursive residuals (Bhatta, 2012).

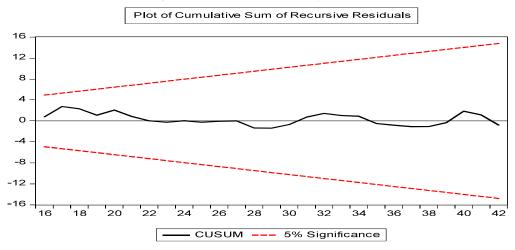



Figure 1:CUSUM Plots for Stability Tests

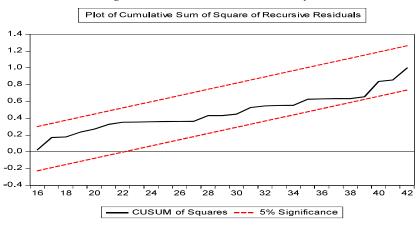



Figure 2: CUSUMSQ Plot for Stability Test

Figure 1 and Figure 2 show that the graphical representation of the CUSUM and CUSUMSQ plots respectively applied to the model selected by the AIC criterion. Since both of the plots lie between the critical regions at 5 percent level of significance, the model is stable indicating no evidence of any significant structural instability.

### Conclusion

The study observes that initially the portion of real capital expenditure is higher than real recurrent expenditure. It seems to be favorable for an economy. However, in recent years, the growth rate of real recurrent expenditure is more than that of the growth of real capital expenditure, indicating that the government is spending rapidly on consumption sector, which reflects the poor performance of Nepalese economy. From the long run analysis, using ARDL model, it is found that the public expenditure directly causes economic growth, which is similar to Keynesian hypothesis of public expenditure.

### References

Aryal, T. N. (2015). Trend, structure and effects of public expenditure in the economic growth of Nepal (Unpublished master's thesis). Central Department of Economics, Tribhuvan University, Kathmandu, Nepal.

Attari, K., & Javid, K. (2013). Applied econometrics (1st ed.). New York: Palgrave MacMillon.

Brown, A., Durbin, C., & Evans, M. (1975). Economic growth in a cross section of countries.. *The Quarterly Journal of Economics*, 106(2), 407–443.

Bhatta, S. R. (2012). *Stability of money demand function in Nepal* (Unpublished master's thesis). Central Department of Economics, Tribhuvan University, Kathmandu, Nepal.

Bhattarai, B. (2014). *Inflation and growth: estimation of threshold level of inflation in Nepal* (Unpublished master's thesis). Central Department of Economics, Tribhuvan University, Kathmandu, Nepal.

Budha, B. B. (2013). Demand for money in Nepal: An ARDL bound testing approach. NRB Economic Review, 25(1). Kathmandu, Nepal: Nepal Rastra Bank.

Gaire, H. N. (2014). Relevance of Keynesianism in Nepal: An empirical analysis. *NRB Economic Review*, 26(2), 83–95.

Granger, C. W. J. (1981). Some properties of time series data and their use in econometric Model Specification, *Journal of Econometrics*, 16(2), 121-130.

Gujarati, D. N., Porter, D. C., & Sangeetha G. (2012). *Basic econometrics* (5<sup>th</sup> ed.). New Delhi, India: Tata McGraw-Hill Publishing Company Limited.

- Hasnul, A. (2015). The effects of government expenditure on economic growth: the case of Malaysia. Kuala Lumpur, Malaysia: Lorong Universitiy.
- Idris, M., & Bakar, R. (2017). Public sector spending and economic growth in Nigeria: In search of a stable relationship. .Asian Research Journal of Arts & Social Sciences, 3(2), 1-19.
- Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control, 12(2/3), 231-254.
- Johansen, S., & Juselius, K. (1990). Maximum likelihood estimation and inference on cointegration: With application to the demand for money. Oxford Bulletine of Economics and Statistics, 52(2),
- Kennedy, J. (2012). Public finance. New Delhi, India: PHI Learning Private Limited
- Kharel, R. S. (2012). Modelling and forecasting fiscal policy and economic growth in Nepal. NRB Economic Review, 24(1), 1–15. Kathmandu, Nepal: Nepal Rastra Bank (NRB).
- Kunu, S., & Basar, S. (2015). The effects of public expenditures on economic growth: An empirical analysis for Turkey. Internationa Journal of Business and Social Science, 6(4), 151-161.
- Lekhi, R. K. (2011). Public finance (18th ed.). New Delhi, India: Kalayani Publishers.
- Menyah, K., & Rufael, Y.W. (2013). Government expenditure and economic growth: The Ethiopian experience, 1950-2007. The Journal of Developing Areas, 47(1), 263-280.
- MoF (Ministry of Finance) (2016). Economic Survey. Retrieved from www.mof.gov.np.
- NRB (Nepal Rastra Bank) (2016). A Handbook of Government Finance Statistics. Retrieved from www.nrb.org.np.
- NRB (Nepal Rastra Bank) (2017). A handbook of government finance statistics. (vol. V). Kathmandu, Nepal: Research Department, Government Finanance Division. www.nrb.org.np.
- Odhimbo, N. (2013). Higher education quality in Kenya: A critical reflection of key challenges. Quality in Higher Education, 17 (3) 299-315.
- Ogunmuyiwa, M. C. (2015). Research methodology. Olabisi: University of Lagos.
- Pesaran & Shin, Y. (1999). An autoregressive Distributed Lag Modeling Approach to cointegration analysis, econometrics and economic theory in the 20th Century: The Ragnar Frish Centennial Symposium. Steinar Strom, UK: Cambridge University Press, pp. 371-413.
- Pesaran, M. H., Shin, Y., & Smith R. J. (2001). Bound testing approach to the analysis of the relationships. Journal of Applied Econometrics, 16, 289-326.
- Segun, O. M., & Adelowokan, O. A. (2015). Measuring the impact of public expenditure on economic growth in Nigeria. Journal of Social Science Studies, 2(2).
- Selim, H. (2015) Estimating labour supply elasticity based on cross-country data. Journal of Public Economics, 127, 87-99. Elsevier.
- Sharma, B. (2012). Government expenditure and economic growth in Nepal a minute analysis. Basic Research Journal of Business Management and Accounts, 1(4), 37–40.
- Subedi, N. L. (2016). Budget Deficit-Economic Growth Nexus in Nepal. (Unpublished master's thesis). Central Department of Economics, Tribhuvan University, Kathmandu, Nepal.
- Subedi.S. (2013). Trend of public expenditure and its relaton with gross domestic product (Unpublished master's thesis). Central Department of Economics, Tribhuvan University, Kathmandu, Nepal.
- Thapa, N. (2015). An empirical analysis between government expenditure and economic growth in Nepal (Unpublished master's thesis). Central Department of Economics, Tribhuvan University, Kathmandu, Nepal.
- Timilsina, B. (2010). Trends of public expenditure in Nepal. (Unpublished master's thesis). Central Department of Economics, Tribhuvan University, Kathmandu, Nepal.
- Tsaurai, N., & Odhiambo, N. M. (2013). Government expenditure and economic growth in Zimbabwe: An ARDL-bounds testing approach. Int.j. Economic Policy in Energing Economies, 6(1),78-90.
- Wang, L., Peculea, A. D., & XU, H. (2016). The relationship between public expenditure and economic growth in Romania: Does it obey Wagner's or Keynes's Law? Theoretical and Applied Economics, XXIII (3), 41-52.

# The Economic Journal of Nepal, Vol. 40, No. 1, 2, 3 & 4, Jan-Dec 2017 (Issue No. 148) © CEDECON-TU

# APPENDIX 1

Data Processing for Study

(Rs. in million)

|       | Deflator | REXP   | CEXP    | Ŋ    | RGDP     | RREXP   | RCEXP   | LRGDP | LRREXP | LRCEXP | GRGDP | GRREXP | GRCEXP | RPE     | GRPE      |
|-------|----------|--------|---------|------|----------|---------|---------|-------|--------|--------|-------|--------|--------|---------|-----------|
| 12.64 | 64       | 532    | 967.3   |      | 131061.8 | 4208.9  | 7652.7  | 11.12 | 9.62   | 88.6   |       |        |        | 11861.6 |           |
| 12.   | 12.78    | 658.4  | 1238.9  | -2.4 | 136094.2 | 5151.8  | 9694.1  | 11.13 | 9.71   | 66'6   | 3.84  | 22.40  | 26.68  | 14845.9 | 25.159461 |
| 12    | 12.49    | 792.9  | 1498.3  | 4.9  | 138389.3 | 6348.3  | 11996.0 | 11.14 | 08'6   | 10.08  | 1.69  | 23.22  | 23.75  | 18344.3 | 23.564982 |
| 1     | 13.81    | 822.6  | 1808    | 9.3  | 142886.1 | 5956.6  | 13092.0 | 11.15 | 6.77   | 10.12  | 3.25  | -6.17  | 9.14   | 19048.5 | 3.8390186 |
|       | 15.3     | 985.1  | 1978.8  | 4.3  | 145240.4 | 6438.6  | 12933.3 | 11.16 | 9.81   | 10.11  | 1.65  | 8.09   | -1.21  | 19371.9 | 1.6976643 |
|       | 16.02    | 1067.2 | 2308.6  | 10.2 | 145733.9 | 6661.7  | 14410.7 | 11.16 | 9.82   | 10.16  | 0.34  | 3.47   | 11.42  | 21072.4 | 8.7782534 |
|       | 17.2     | 1274.9 | 2731.1  | 13.0 | 158747.4 | 7412.2  | 15878.5 | 11.20 | 6.87   | 10.20  | 8.93  | 11.27  | 10.19  | 23290.7 | 10.526979 |
|       | 18.62    | 1530.6 | 3726.9  | 8.6  | 166440.7 | 8220.2  | 20015.6 | 11.22 | 16.6   | 10.30  | 4.85  | 10.90  | 26.05  | 28235.8 | 21.231954 |
|       | 20.07    | 1903.5 | 4982.1  | 14.9 | 168204.0 | 9484.3  | 24823.6 | 11.23 | 86.6   | 10.39  | 1.06  | 15.38  | 24.02  | 34307.9 | 21.505185 |
|       | 21.53    | 2107   | 5163.8  | 6.5  | 182991.8 | 9786.3  | 23984.2 | 11.26 | 66.6   | 10.38  | 8.79  | 3.18   | -3.38  | 33770.6 | -1.566313 |
|       | 22.73    | 2731.4 | 5488.7  | 3.7  | 195528.7 | 12016.7 | 24147.4 | 11.29 | 10.08  | 10.38  | 6.85  | 22.79  | 0.68   | 36164.1 | 7.0876767 |
|       | 25.98    | 3241.2 | 6213.1  | 15.3 | 204837.7 | 12475.8 | 23914.9 | 11.31 | 10.10  | 10.38  | 4.76  | 3.82   | 96'0-  | 36390.7 | 0.6265463 |
|       | 29.23    | 3784.6 | 7378    | 14.3 | 209152.0 | 12947.7 | 25241.2 | 11.32 | 10.11  | 10.40  | 2.11  | 3.78   | 5.55   | 38188.8 | 4.9412698 |
|       | 32.7     | 4279.5 | 9428    | 10.7 | 223903.0 | 13087.2 | 28831.8 | 11.35 | 10.12  | 10.46  | 7.05  | 1.08   | 14.23  | 41919.0 | 9.7675459 |
|       | 36.4     | 5142.1 | 13238.8 | 8.1  | 235979.0 | 14126.6 | 36370.3 | 11.37 | 10.15  | 10.56  | 5.39  | 7.94   | 26.15  | 50497.0 | 20.463336 |
|       | 40.3     | 9.6985 | 12997.5 | 9.7  | 247491.0 | 14564.8 | 32251.9 | 11.39 | 10.16  | 10.51  | 4.88  | 3.10   | -11.32 | 46816.6 | -7.288263 |
|       | 44       | 6831.3 | 15979.5 | 9.5  | 263955.0 | 15525.7 | 36317.0 | 11.42 | 10.19  | 10.56  | 6.65  | 09'9   | 12.60  | 51842.7 | 10.73572  |
|       | 52.3     | 8698.4 | 16512.8 | 21.1 | 276875.0 | 16631.7 | 31573.2 | 11.44 | 10.22  | 10.50  | 4.89  | 7.12   | -13.06 | 48205.0 | -7.016907 |
|       | 57.7     | 9886.2 | 19413.6 | 8.7  | 286449.0 | 17133.8 | 33645.8 | 11.46 | 10.23  | 10.53  | 3.46  | 3.02   | 6.56   | 5.67705 | 5.3408974 |
|       | 62       | 10511  | 21188.2 | 0.6  | 309115.0 | 16953.2 | 34174.5 | 11.49 | 10.23  | 10.53  | 7.91  | -1.05  | 1.57   | 51127.7 | 0.6856944 |
|       | 629      | 16612  | 19794.9 | 7.8  | 318407.0 | 25207.7 | 30037.8 | 11.50 | 10.40  | 10.48  | 3.01  | 48.69  | -12.10 | 55245.5 | 8.0539086 |

32.03354 11.240788 -3.270568 -4.412001 12.717447 19.40276 -1.1097106 7.45586 12.44618 0.9425045 6.0851884 -1.92166 1.5653193 1.4814696 17.54559 2.2203232 -3.4182747 9.9688983 6.22311 6.866078 9.650676 
 Shah/Bhusal:
 Nexus between Public Expenditure and Economic Growth in Nepal
 1 43

 11.53
 10.42
 10.55
 5.74
 4.42
 16.97
 61455.6
 86301.6 70873.2 76564.5 127073.6 207469.4 62034.8 63657.4 75446.8 121126.5 142889.4 67618.8 74144.5 70599.4 119782.4 122441.9 131571.0 157133.9 65809.7 69511.3 101443.7 70.78 -12.45 11.76 27.63 0.16 12.07 -0.86 -27.01 25.07 17.71 -51.53 5.33 26.58 4.78 5.91 0.32 -15.77 -0.68 1.25 1.90 3.35 7.75 26.29 6.45 2.60 3.42 4.83 7.26 12.35 20.39 6.32 21.90 16.34 1.58 27.74 -4.17 12.53 2.53 1.55 3.40 6.12 0.16 3.23 3.76 5.02 4.58 1.89 3.73 2.75 5.80 4.26 3.85 5.72 3.77 3.90 2.97 4.41 0.01 4.61 10.43 10.45 10.38 10.32 10.64 10.36 10.54 10.56 10.45 10.32 10.36 10.37 10.47 10.33 10.35 10.36 10.75 10.57 10.41 10.51 10.43 10.72 10.60 10.67 10.69 10.73 10.76 10.89 10.99 11.04 11.02 11.18 10.47 10.57 10.66 10.70 10.81 11.00 11.07 11.10 11.62 11.69 11.70 11.84 11.55 11.56 11.58 11.61 11.62 11.63 11.65 11.67 11.74 11.76 11.77 11.81 11.83 11.84 36499.2 23843.5 23170.2 29342.6 37450.0 44082.6 21365.9 22504.9 22932.0 22969.5 25740.9 55645.1 35134.3 23460.1 34832.8 26642.1 28217.8 28307.2 20874.0 32582.5 20732.1 26321.2 151824.4 27202.0 37015.3 6.85695 39401.0 47029.7 53104.4 77044.0 98416.5 117148.5 29310.5 48637.3 49867.2 52276.6 9.86689 124551.4 45837.3 108639.0 99937.1 104104. 336681.0 694344.0 637771.0 674227.0 353586.0 382348.0 405746.0 414092.0 448654.0 463165.0 480435.0 493651.0 542652.0 565759.0 587534.0 614637.0 694269.0 365592.0 413428.0 429699.0 522260.0 8.0 11.4 8.2 8.2 3.4 2.5 3.0 4.7 4.0 4.6 8.0 5.7 8.9 12.6 9.5 9.1 0.4 8.2 6.6 9.1 7.2 18714 24980.5 22992.1 39729.9 26542.6 28307.2 24773.4 27340.8 29606.6 73088.9 54598.4 159089 22356.1 53516.1 47327.7 51390.7 25480.7 23095.6 28943.9 40509.8 66694.7 88754.7 67018 20728 31944 48864 127739 210168 247456 23243 35579 55552 98919 77122 91447 186598 243460 434066 45837 52091 339278 303532 71.1 189.6 76.2 86.3 90.3 103.9 111.4 118 126.2 135.4 142.9 165.8 210.3 224.1 237.7 259.1 285.9 272.4 79.3 100 107.1 239388 26.9 38.3 43.6 71.6 77.8 100 36.3 37.2 47.1 59.9 1083415 65.6 85.5 93.3 675859 49.8 29.1 330018 35.1 53.2 40.1 500699 41.7 269570 366251 611118 289789 430396 548485 909528 1387482 1758738 755257 1248482 1525221 413428 460325 1899089 1987824 2013 2016 1996 2002 2005 2006 2007 2008 2009 2010 2011 2012 2014 2015 1997 1998 1999 2000 2003 2004 2001

Source: A Handbook of Government Finance Statistics (2017)