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Introduction

Nepal is the second richest country in the world in 
water resources and its 6,000 rivers on a steep 

gradient have made the country an ideal place for 
hydropower development. Nepal could accrue significant 
economic benefits through an effective utilization of 
water resources.  Effective runoff forecasting system 
could be a key tool for day to day operational strategies 
for the optimum use of water resources, including 
reservoir operation and flood forecasting.

Flood forecasting is of particular interest to Nepal 
as the country has faced an increasingly serious flood 
threat during the monsoon each year. In June 2013, 
for example, there was extensive loss of human life and 
property due to floods on the Mahakali River from intense 
rains. Northern Uttarakhand and the Darchula district 
in western Nepal suffered devastating destruction. In 
Darchula district the district headquarters were washed 
away and more than 100 families saw their homes 
washed into the raging flood torrents.

Runoff forecasting can be a very useful tool in water 
resource planning and flood mitigations. However, 
accurate forecasting of runoff can be challenging: 
The accuracy of the runoff forecast depends on 
the quality of meteorological forecasts 
(precipitation and temperature) 
and the ability of the calibrated 
hydrological model to represent the 
actual response of the catchment. 

This paper presents a framework 
to establish a flood warning system 
in Nepal and to use runoff forecasting 
for an effective operation of Kulekhani 
hydropower plant. 

Study Area
The Kulekhani catchment is located 
at the northeast part of Makwanpur 
district which lies 21 km southwest 
of Kathmandu, Nepal. The catchment 
area is approximately 126 km2. The 
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surrounding area is composed rugged hill terrain 
surrounded by numerous mountains and valleys.

Kulekhani I (hereafter called as only ‘Kulekhani’) is 
the only reservoir hydropower plant in Nepal. Its total 
installed capacity is 60 MW divided into two units each 
of 30 MW. The annual expected energy generation 
capacity as primary energy is 165 GWh and 46 GWh as 
secondary energy. 

Materials and Methodology
Concept design

A successful runoff forecasting system involves 
many steps to be carried out in sequence. However, the 
approach can vary according to the study site, selection of 
the hydrological model, and the meteorological forecast 
model. Figure 1 illustrates the steps that were carried out 
in preparing our work. The boxes in light green indicate 
the tasks to be completed for set up, and light blue boxes 
indicate tasks that require daily execution. 

Data acquisition
Both measured and forecasted meteorological data 

(precipitation and temperature) are used in modelling. 
The measured data is employed for model setup and 

Figure 1: A satellite image of study area, Kulekhani catchment (Source: Google)
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forecasted data for operating inflow prognoses. We chose 
the period 2007-2011 for the HBV model calibration. 
However, data for only 2007-2009 were used in bias 
correction since earlier forecasted data were not available 
in the system.

All the measured precipitation and temperature 
data were collected from the Department of Hydrology 
and Meteorology (DHM) under the Ministry of Science, 
Technology and Environment, Nepal. All these data are 
passed through quality control such as visual inspection, 
accumulation plots, and double mass curve. Missing 
data are approximated and supplied using the inverse 
distance method (Khanal, 2013).

Meteorological forecasts data used in this study are 
outputs of the Global Forecast System (GFS) model 
which is run with 0.5o x 0.5o horizontal spatial resolution 
approximately equivalent to 50 km x 50 km and temporal 
resolution of three hours. These data are obtained from 
the Research Data Archive (RDA) which is maintained by 
the Computational and Information Systems Laboratory 
(CISL) at the National Center for Atmospheric Research 
(NCAR). The original data are available from the RDA1 in 
dataset number ds335.0.

Meteorological forecast data are stored in 
GRIB (Gridded Binary or General Regularly-distributed 
Information in Binary) form, which can be read with 
various software packages. We used code developed in 
the R, programming language (Team 2011) to read the 
GRIB files which contain meteorological forecasts. When 
both measured and forecasted meteorological data were 
ready, a comparison study were carried out and found 
large discrepancies between them, which made bias 
correction necessary.

Bias correction to model outputs
written regarding adjustment methods for daily output 

from weather models. Engen-Skaugen 
(2007) describes some bias correction 
methods for climate model data based on a 
method of preserving monthly variability. 
Some traditional techniques such as 
the delta change method is also used in 
different ways to solve problems with 
local representatives by concentrating 
on the changes rather than the absolute 
values, particularly in studies of climate 
change signals. The delta change method 
modifies the time series obtained by 
the RCM or the output from global 
forecast model by altering the variability; 
however, this method is not applicable 
to scenarios transient in time. The spline 
method smoothens out the mean monthly 
temperature values to daily values, 
neglecting the day-to-day variability. Two 
advanced method for bias correction such 
as the empirical bias correction method 

and the statistical bias correction method are the latest 
development in bias correction. 

For the present case, we used the statistical bias correct 
method. Unlike the empirical adjustment method, which 
requires long observational data series, the statistical 
method can be applied when limited observational data 
are available (Engen-Skaugen 2007). The statistical bias 
correction method is used for correcting climate/weather 
model output to produce internally consistent fields that 
have the same statistical intensity distribution as the 
observations. This method is considered to be a robust 
statistical bias correction method, which was tested and 
validated by Piani et al. (2010) using regional model 
output over Europe from the ENSEMBLES project. This 
method also derives some form of transfer function 
using daily observed and simulated data from the control 
period and maintains the statistical distribution of the 
daily precipitation in analysis period. 

The statistical bias correction method is based on the 
initial assumption that both the observed and simulated 
probability distribution can be well approximated by 
gamma distribution (Eq.1).

Pdf(x) =  			 
					     (1)

Where, x is daily precipitation. K and θ are the shape 
and scaling parameter, respectively.  is the gamma 
function evaluated at k.

In our study, two years (2007 and 2008) were 
considered as the control period and the year 2009 
was used as the analysis period to demonstrate the 
applicability of the model. The transfer function derived 
by using daily precipitation data from control period was 
applied to the daily precipitation forecasts in analysis 
period to correct biases. 
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Figure 2: Steps involved in runoff forecasting and its 
application, a case study of Kulekhani catchment
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Two histograms were plotted, one using GFS model 
data and the other using observed daily precipitation 
within the control period. No subdivision of seasons 
was done at this point. The bin size was set to be 2 mm/
day, while the lower limit of the lowest bin was set at 
0.01 mm/day. This was done to remove dry days from 
the statistics. The histograms of both observed and 
simulated daily precipitation are fitted with the two-
parameter (k, θ) gamma distribution defined in Eq. 1. 
In practice, the fitting was carried out by plotting the 
histograms with different sets of k and θ values and the 
best value of k and θ were selected by visual inspection of 
the graph. The model output obtained its best fit with k = 
0.71 and θ = 17.5, while as observed precipitation best fits 
a distribution with k =0.48 and θ = 23.0.

Figures show that the daily precipitation forecast 
for the control period (2007 and 2008) is well fitted 
into gamma distribution and so is daily observed 
precipitation.

To derive the transfer function the cumulative 
distribution (cdf) was plotted with the simulated and 
observed daily precipitation value. The cdf was calculated 
as (Eq.2).

Figure 3: Fitted gamma distribution for precipitation forecast in 
control period

Figure 4: Fitted cumulative distribution for precipitation forecast 
in control period

Figure 5: Fitted gamma distribution for observed precipitation in 
control period 

Figure 6: Fitted cumulative gamma distribution for observed 
precipitation in control period

cdf(x) = + cdf(0)		
				     (2)

Where, x, k , θ and  hold the same meaning as 
in Eq.1 and cdf(0) is the fraction of the days with no 
precipitation.

The desired transfer function y=f(x) obeys the 
relationship: cdf

obs
(f(x))=cdf

sim
(x), where x and y are the 

simulated and corrected values of daily precipitation 
respectively and can be derived graphically from figure 6. 
AutoCAD 2D was used to generate the transfer function. 
The transfer function y=f(x) thus derived from AutoCAD 
is shown in figure 7. 

The degree to which f(x) deviates from the y=x 
line as shown in figure 7 is a measure of the difference 

between the observed and simulated pdfs. Thus the 
derived transfer function (y = -3E-05x3 + 0.0028x2 + 
0.6775x – 4.0517) was used to correct the simulated daily 
precipitation in analysis period.

Calibration of HBV model
Since recorded runoff from the Kulekhani catchment for 
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the study period of 2007-2009 were not available, daily 
runoff to the Kulekhani reservoir was computed by an 
indirect method based on the daily reservoir level and the 
energy generation from Kulekhani I Hydropower Plant. 

The computed input potential evaporation required 
for driving the HVB, the Thornthwaite method, was 
used to compute the average monthly values of potential 
evapotranspiration (Ponce, 1989). The method is based 
on an annual temperature efficiency index (J), defined 
as the sum of 12 monthly values of heat index (I) and 
average monthly values of daylight hours (d). I is the 
function of mean monthly temperature (T), in degrees 
Celsius as shown below:

		  I = 

Unadjusted evapotranspiration is calculated by 

	 PET(0) = 1.6 x 

Where, PET(0) is potential evapotranspiration at 0o 
latitude in centimeters per month and c is an exponent 
evaluated as

c = 67.5 x 10-8 J3 -77.1 x 10-6 J2 + 0.01792J + 0.49239
The unadjusted monthly evapotranspiration values 

Figure 8: Transfer function which follows the equation cdfobs ((fx))=cdfsim(x)

Figure 7: Cumulative gamma distribution including no precipitation days in control 
period

PET (0) are adjusted depending on the 
number of days N in a month (1-31) and 
the duration of average monthly day light 
d (in hours), which is a function of season 
and latitude (Xu and Singh 2001).

	 PET = PET(0) x ))

In which PET is the adjusted monthly 
potential evapotranspiration (mm), d is 
the duration of average monthly daylight 
(hr); and N is the number of days in a 
given month, 1–31 (days).

Runoff forecast simulation
Model updating is the first crucial 
step in runoff forecast simulation 
process. Before the forecast is run, it is 
very important that correct ‘starting’ 
conditions in the model are established. 
Model updating is done with the model 
parameters determined through a model 
calibration process or preferably by 
changing model states or input values to 
get similarity between the simulated and 
observed value.

The updated HBV model is run at 
eight consecutive days based on bias 
corrected meteorological forecasts. 

As an example, in our study, the 
first runoff forecast simulation was run 

at 01st August, 2009 on meteorological 
forecasts for the coming seven days (August 2-August 
6). Similarly, the model was again run at the second day 
(August 2) with the meteorological forecasts that are 
made from second day for coming seven days (August 
3-August 7). Then the process was repeated for eight 
successive days with seven day forecasts for each day2. 

Application of runoff forecast in reservoir 
operation 
Reservoir operation is one of the important applications 
of runoff forecasting as it calculates optimal production 
profile based on the probable future runoff and price 
variations. Knowing the short-term runoff and price 
level of energy, it is possible to decide whether reservoir 
water should be stored for future production or used in 
the present to get the optimum benefit from the project. 
The strategy of the reservoir operation is to reduce spill 
by preserving storage capacity to capture coming floods 
and to maintain the long term operational strategy of the 
reservoir within the short-term (i.e., to reserve water for 
the dry period).

Incorporating all the facts associated with energy 
planning in the Nepalese context, Shrestha (2012) 
developed a tailor-made model for Kulekhani reservoir 
operation. This model has the capacity to predict the 

Y            X
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probable extent of load-shedding and reservoir levels for 
seven days in advance. 

Results and discussion
The HBV model calibrated for the Kulekhani 
catchment was carried out by manually adjusting 
parameter combinations to produce the best possible 
correspondence between observed and simulated runoff. 
Typical  values (Killingtveit and Sælthun 1995) and the 
calibrated parameter set (R2=0.76) are also presented in 
table 1.

Recommended value Calibrated 
valueName Meaning Value range Default 

value Units

Tx Thresholt temperature Rain/Snow -1.0-2.0 1.0 oC -1.0
Ts Thresholt temperature Snowmelts -1.0-2.0 0.0 oC -1.0

Cx Degree-day-factor 3.0-2.0 4.0 mm/oC
*Day 3.0

CFR Re-freezing efficiency in snow 0.0-0.01 0.005

PKORR Precipitation correction – Rainfall 1.05-1.2 1.05 1.0

SKORR Precipitation correction – snowfall 1.15-1.5 1.2 1.15

TTGRAD Temperature lapse rate for clear days -0.6--1.0 -1.0 oC/100 m -1.0

TVGRAD Temperature lapse rate during precipitation -0.4--0.6 -0.4 oC/100 m -0.5

PGRAD Precipitatin lapse rate 1.0-1.10 1.05 1.0

FC Field capacity in soil moisture zone 75-300 150 mm 300.0

LP Thresholt value for potET in soil moisture 70%-100% 100 % of FC 250.0

β Parameter in soil moisture routine 1.0-4.0 2.0 1.0

UZL Threshold level for quick runoff in upper zone 10-40 20 mm 40.0

KUZ1 Recession constant in upper zone 0.1-0.5 0.3 1/day 0.34

KUZ Recession constant in upper  zone 0.05-0.15 0.1 1/day 0.12

PERC Percolation from upper to lower zone 0.5-1.0 0.6 mm/day 3.62

KLZ Recession constant in lower zone 0.005-0.002 0.001 1/day 0.006

In addition to an attempt to get highest R2 value, 
high attention was also given to reduce the error in water 
balance throughout the calibration period.

The snow parameters are insensitive since Kulekhani 
catchment does not have snow. The percolation from 
upper to lower zone (PERC) and precipitation correction 
rainfall (PKORR) for the Kulekhani catchment were found 
to be out of the recommended range, but acceptable.

The timeseries plot of observed and simulated runoff 

Table 1: Free parameters in the HBV model (Killingtveit and Sælthun, 1995) and calibrated value

and water volume are shown in figure 9.
In figure 9, we see that the variability of flow over 

time is well maintained and the simulated water volume 
follows the observed water volume quite closely.

The low value of R2 = 0.76 can also be explained by 
the uncertainty in the computed runoff from reservoir 
data. Uncertainty in reservoir level recordings and 
turbine efficiency will directly influence the result. 

It must also be noted that the value of R2 in this range 
is also due to the unavailability of long observational 
timeseries. In our study, there were 18 parameters that 

Figure 9: Observed and simulated runoff for Kulekhani catchment 2007-2011

required adjustment through calibration. The large 
number of parameters underscores the idea that long 
data series are needed to produce more reliable results. 
It is also worthwhile to mention that the calibration of 
a small catchment can be challenging as catchment 
response to rainfall can be too quick as to be reproduced 
by the HBV model run with daily time steps. This 
challenge illustrates the need to calibrate the model with 
finer time steps (e.g., hourly). 

A large degree of uncertainty is observed in 
runoff forecasting. The uncertainty in runoff 
forecasting is the result of the uncertainty in 
meteorological forecasts (precipitation and 
temperature) and in computed observed runoff. 
The error variability in runoff forecasts over time 
does not show any systematic pattern. In some 
cases, the runoff forecast made for a particular day 
seven days in advance shows a more reliable result 
than the forecast made for the same day one day 
prior. But this is not valid for all cases. Figure 10 
shows the runoff forecast made on different dates 
and error variability over time.

These forecasted runoffs are used in the 
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existing reservoir model to estimate the capability of the 
plant to meet the energy demand and to predict reservoir 
level up to seven days in advance.

The reservoir operation model  (Shrestha 2012) was 
run at each successive day from August 1, 2009 to August 
8, 2009 based on the runoff forecasts made each day 
for seven days in advance. Table 2 shows the probable 
extent of load-shedding during the forecast period with 
respective model runs.

The model also predicts the reservoir level for the 
coming seven days with each model run from August 
1 to August 8. The reservoir level in turn governs the 
reservoir operation strategy since it has to follow the 
predefined reservoir guide curve. 

The uncertainty associated with runoff forecasts 
ultimately led to the uncertainty in reservoir operation.  
Figure 11 shows the reservoir level forecast and error 
variability over the time. Because of the uncertainty in 
the runoff forecasting, the reservoir operation model is 

unable to forecast the reservoir level precisely. 
The reservoir operation model which is used 

here for demonstration purposes was developed 
by considering the existing situation of Kulekhani 
reservoir. In the future, if different prices for energy 
are set according to time of energy consumption and 
the real time energy demand on the Integrated Nepal 
Power System (INPS) grid, the runoff forecast will 
receive more attention in optimizing the reservoir 
operation to its best level.

Flood warnings
Runoff forecasting is a first crucial step to work with 
flood warning system. According to the Norwegian 
Water Resources and Energy Directorate (NVE; www.
nve.no), flood warning limits are defined based on 
the re-occurrence frequency of the predicted runoff. 
For the flood warning, the same process of runoff 
forecasting is conducted and the forecasted runoff 
will be compared with the predetermined warning 
limits to decide whether warnings should be issued 
or not. Different types of warning messages will be 
issued based on the magnitude of the floods on the 
Kulekhani River as discussed below:

Notification of flooding: This notification is 
issued when the flow in the river is expected 
to exceed the flow with a re-occurrence 
interval of 5 years. The corresponding flow 

in Kulekhani River with 5 years return period is 345m3/s 
according to Gumbel’s method.

Notification of major flooding: This 
notification will be issued when the expected 
flow in the river exceeds the flow with a 50 
years return period. The corresponding flow 

with 50 years return period is 685 m3/s according to    
Gumbel’s method.

Conclusion
In conclusion, runoff forecasting can be a very useful 
tool in day to day energy optimization, effective reservoir 
operation, and establishing an effective flood warning 
system. This paper presents a working framework for 
reservoir operation considering the current energy 
pricing system in Nepal and operation of the plant to 

Forecast 
made on

Loadshedding (MWh) forecast for the date

01.aug 02.aug 03.aug 04.aug 05.aug 06.aug 07.aug 08.aug 09.aug 10.aug 11.aug 12.aug 13.aug 14.aug

01.aug.09       23.9        

02.aug.09     23.9       8.8  

03.aug.09   23.9       8.8    

04.aug.09 23.9       8.8      

05.aug.09       8.8   6.5    

06.aug.09     8.8   6.5      

07.aug.09   8.8   6.5        

08.aug.09               8.8   6.5       0.8

Table 2: Load shedding forecast made on different date

Figure 10: Uncertainty in short term runoff forecasting
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reduce loadshedding. In the future, if different prices for 
energy are set according to time of energy consumption 
and real time energy demand on the INPS grid and 
regional grid connection are included in the model, 
the runoff forecasting frame work could provide better 
utilization of water and better load coverage.

The uncertainty of observed runoff used in the model 
calibration and uncertainty of meteorological forecasts 
used in forecast simulation were the main sources of 
uncertainty in the runoff forecasting, which, in turn, 
would cause uncertainty in the reservoir operation 
and flood warning system. To improve the results in 
the subsequent application of runoff forecast, it is very 
important to work with good quality of runoff data and 
improved meteorological forecasts (i.e., finer spatial 
resolution) than the models used in this demonstration.
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Foot Note
1	  http://rda.ucar.edu/datasets/ds335.0/#description
2	 Note again that 2009 was selected to demonstrate 

the forecast system due to lack of actual data for the 
spring of 2013 when the work was done.
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