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Abstract: This paper presents the numerical prediction of wall shear and velocities in steady and superposed 
pulsatile turbulent flow in a pipe, the phenomena that can be observed in hydropower. The previously 
conducted experiment is a base for this study and some crucial aspects of CFD while using a commercial 
code have been emphasized. The widely-accepted grid convergence index approach is adopted to quantify 
the discretization uncertainty and the results are validated against the experiment. The influence of the wall 
functions applied in the code is also studied with two turbulence models: standard k-ε and kω based SST 
model. The time-averaged results of superposed flow with small amplitude unsteadiness are equivalent 
to results from the steady flow. The results and the method used in this paper may be useful for the CFD 
simulations in hydropower applications like penstock and bifurcations designs.   
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Introduction

Computational Fluid Dynamics (CFD) has now been a 
well-established technique in hydropower research 

and development. Increasing number of publications 
and research based on CFD are currently seen in the 
hydropower applications (Trivedi, et al., 2016). The 
quality and trust in the CFD results are utmost important 
in relying on its results. The CFD simulations can have 
several sources of error which can be, in most cases, 
difficult to get identified. The common sources of error, 
assuming the correct use of the software and the software 
itself is correct, are the numerical errors and modeling 
errors. As the CFD relies on the discretization of the 
partial differential equations of the mass, momentum 
and energy equations (commonly known as the Navier-
Stokes equation), there is always some difference in the 
exact solution and the approximate solution estimated 
by CFD. These differences are attributed to numerical 
errors. Whereas, the modelling errors result from the 
use of some empirical models implemented in a software 
that describes flow behavior, like turbulence or the wall 
function. 

The purpose of using the wall function in CFD is 
to lower the computational effort with the acceptable 
meshing. This approach uses the law of the wall and the 
first computational node is placed outside the viscous 
sublayer of the boundary layer. The mean velocity is 
proportional to the log from the wall distance. Then the 
near wall velocity profile is assumed to obtain the wall 
shear stress from the effect of the outer flow conditions. 
Here the mean velocity U is assumed to be only the 
function of wall shear τ_ω, distance from the wall surface 
y, the fluid density ρ,  and kinematic viscosity ν. It can 
be presented in the dimensionless form as U^+=U⁄u_τ 
=f((u_τ y)⁄ν)=f(y^+) (Kundu, et al., 2015). And it can be 
presented as

         (1)

k is the von Karman constant and the experimental 
v a l u e is k    0.4 and  is around 4 or 5 for a smooth 
w a l l . The term y+  is given by (u_τ y) ⁄ ν , where 
uτ is the frictional velocity given by uτ=√(τω ⁄ ρ) . The 
Eqn. (1) is called the law of the wall. The wall function 
approach in CFD uses this empirical method to impose 
suitable conditions without resolving the boundary layer. 
However, this method is insufficient to understand the 
boundary layer separation or rotating fluid. Therefore, 
if we are interested in boundary layer phenomena, this 
approach may not be that accurate. 

This paper presents the crucial aspects of utilizing a 
commercial code by studying the wall shear and velocity 
in a turbulent flow, which may be useful to the CFD users 
of Nepal. In this regard, a numerical model resembling 
the previously conducted experiment in a pipe has been 
developed and used as the test case. Some experimental 
conditions: both steady and pulsatile superposed flow, 
were applied in the study. The study of the wall shear 
and velocity profiles can also be useful in the other areas 
of the study, for instances, the Pressure time method in 
discharge measurement or in designing penstocks and 
bifurcations.

Method
The test case of Sundström et al. (2016) was used in this 
study. The schematic diagram is shown in Fig. 1. The 
measurement locations for velocity and wall shear stress 
were at 7.2 m and 8 m respectively from the inlet. The 

Figure. 1: Domain information and the test location of velocity 
and the wall shear stress. Velocity measurement was done at 
7.2 m from the inlet and the wall shear measurement was done 
at 8 m from the inlet. The total length of the pipe is 10 m and 
its diameter is 0.1 m.
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velocity was measured with the help of a two-component 
LDV system from Dantec Dynamics and the wall shear 
was measured with a flush-mounted (55R46) hot-film 
probe. 

The mean Reynolds number Re=Ub D/υ was 14500 
within 0.4% during the experiment, where D is the pipe 
diameter. The Karman number Reτ=μτ D/υ during the 
experiment was 900 within 1%, so the frictional velocity, 
μ τ, is in average equal to 0.009036 m/s. 

Computational Model
The commercial CFD code ANSYS CFX v16.0 was 

used for the numerical studies. The grid was created in 
ICEM CFD with a single element thickness. Four sets 
of grids were generated: a) coarsest grid G4 without 
resolving the boundary layer (y+~22), 13980 cells, b) 
coarse grid G3 without resolving the viscous sublayer 
(y+~5), 23067 cells, c) medium grid G2 with resolved 
boundary layer (y+~0.7), 169387 cells and d) fine grid 
G1 with fully resolved boundary layer (y+~0.3), 429141 
cells. The node incremental ratio was kept at 1.15. 

The axisymmetric condition was established with the 
no-slip condition at the wall was employed. The inlet 
velocity was prescribed to match the Reynolds number 
of the experiment and the outlet was considered as the 
fully developed flow by prescribing the static pressure. 
The high-resolution scheme of the code was selected 
for the spatial discretization. This scheme is the blend 
of the first and second order to be stable. It also assures 
the accuracy to be as close as possible to a second orde. 
(ANSYS, 2016). The turbulence numerics were chosen 
as the first order. The RMS residual in the mass and 
momentum equations was set to 1E-7 and the variables 
to reach the stable state as the convergence control. The 
unsteady simulations were also carried out with the 
above-mentioned settings and the transient scheme was 
chosen as the second order backward Euler. 

Two turbulence models were studied: k-ε standard  
with the wall function and Menter’s kω based Shear 
Stress Transport (Menter, 1994). In the CFX code, the  
k-ε model utilizes the scalable wall function, which 
virtually moves the first computational node to be outside 
the viscous sublayer. while the SST model automatically 
switches to the wall function approach from the low-
Re formulation if the grid is not refined till the viscous 
sublayer. 

Estimation of Discretization Error
The widely-accepted Richardson extrapolation method 
was used to estimate discretization error. The method 
is well described in (Celik, et al., 2008) and briefly 
mentioned here and followed accordingly. For a 
representative cell size h and considering h1<h2<h3, 
the apparent order, p, of convergence is given by the 
expressions

Where denotes the solution on the ith grid and r21=h2 ⁄ h1 

,r32=h3 ⁄ h2.

Then the approximate relative error is 

		  	

		  		  (3)

The extrapolated values are given by: 

	 (4)

The fine grid convergence index is then 

	 		  (5)

The discretization error and uncertainties computed 
applying the above method in the present analysis is 
resented in Table 1.

Table 1: Discretization error and uncertainties in the numerical 
solutions 

Parameter Wall shear stress 
(Pa) at x/L = 0.8

r_21 1.36

r_32 1.94

p 0.63

GCI 21 fine 7.88%

GCI 32 med 4.58%

Figure 2: Wall shear stress for different grids with standard  
k-ε and SST turbulence model. The extrapolation is done per 
the GCI method and G∞ means if the number of cells in the 
grid reach infinity. The wall shear predicted by the SST model 
for all the grids are in good agreement with experimental data 
than that predicted by the k-ε model. The uncertainty in the 
experiment was 13. (Sundstrom, et al., 2016).
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		  (4)

Where μt is eddy viscosity, K is the turbulent kinetic 
energy, δij is Kronecker delta function. The velocity 
fluctuation is not seen to be captured enough with the 
SST model.

Figure 3: U+ versus y+ for all four sets of grids to study the 
near wall treatment. The numerical results for all grids are in 
good agreement with the law of the wall and the experiment 
in the log-law region for both turbulence models:  k- ε and 
SST. The influence of using the scalable wall function in the 
code is seen for the k- ε in G1 and G2. The viscous sublayer 
is well predicted while using low-Re formulation, i.e. in SST 
turbulence model while the boundary layer is fully resolved G1 
and G2. The experimental results are from (Sundstrom, et al., 
2016).

Figure 4: Velocity profile for the fine grid (G1) using SST and 
k- ε turbulence models. The scalable wall function approach 
for k- ε places the first computational node outside the viscous 
sublayer, unlike with the SST. Note that the first node is always 
on the wall. The Y coordinate is from the center of the pipe, so 
the wall is at 0.05 m. 

The estimated numerical uncertainties for the wall 
shear stress at 8 m from the inlet is 7.88% and 4.58% error 
using the fine grid from the medium grid, respectively.

Results and Discussions
Steady results
The wall shear stress for the grid types: G1, G2 and G3, 
and the both turbulence models considered are shown 
in Fig. 2. The wall shear predicted by the SST turbulence 
model is in good agreement with the experiment. The 
extrapolated wall shear shows very good match with the 
experiment; error below 2.5%. The extrapolated value 
means if the grid was resolved infinitely (G∞ in Fig. 2), 
the solution is exact.

For the fine grid (G1), the model failed to converge 
to the prescribed condition, as this model has problems 
in numerical instability while handling the low 
turbulent Reynolds number conditions. The closest wall 
shear predicted by this model, with the G3 grid, has a 
discrepancy of  18% compared to the experimental result.

The velocity profile at the line, which 7.2 m from the 
inlet of the domain (shown in Fig. 1) for all the grids and 
both turbulence models are shown in Fig. 3 a-d. The wall 
velocities are expressed in the wall units, i.e. U+ versus 
Y+. The curve U+=13.3 tanh (y+ ⁄ 13.3) and the log-law are 
also plotted in the figures. For all the grids, the velocity is 
well predicted in the log-law region either the model is 
using or without using the wall function.  

As the boundary layer is fully resolved in the G1 and 
G2 grids, the viscous sublayer is well captured from 
the simulations using the SST turbulence model (Fig. 3 
a-b). However, the results for k- ε does not capture the 
viscous sublayer because the code uses the scalable wall 
functions, which virtually puts the first computational 
node outside the viscous sublayer. The velocity profile 
for the grid G1 is shown in Fig. 4, where the effect of the 
scalable wall function is clearly seen for k- ε turbulence 
model. The first computation node is placed outside the 
viscous sublayer. 

 The G3 grid also shows the similar behavior like 
G1 and G2 grid (Fig. 3c), but it does not resolve the 
viscous sublayer. The grid G4 uses the wall function for 
both the grids, which accurately predicts the velocity 
in the log-law region Fig. 3d. The U+ values are slightly 
overpredicted while using k- ε model in both cases.

The turbulent axial velocity fluctuation      	 from G1 
using SST turbulence model is compared with the 
experimental data in Fig. 5. The result of the velocity 
fluctuation u' was calculated from the Boussines eddy 
viscosity approximation. This assumption can be 
expressed in the following form for the Reynolds stress 
tensor  as: 
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convergence study was done. The SST turbulence model 
with similar conditions as the previous simulations was 
considered here as well.

The time-averaged wall shear is at most 7% difference 
from the steady results, L+

S= 25 for  (Fig. 6). Furthermore, 
the velocities are also similar with the steady results that 
were presented in Fig. 3a, see Fig. 7. It suggests that even 
in the pulsatile superposed flows, the steady simulations 
are enough to predict the time-averaged results. 

Figure 6: Normalized wall shear stress for the steady and 
unsteady condition with error bar representing the standard 
deviation.

Summary
The time-averaged numerical predictions of the wall 
shear and velocities are in good agreement with the 
steady results and experimental results, which signifies 
the steady simulation are sufficient if the averaged results 

are preferred. The velocity profiles are 
well-predicted by both turbulence models:  
and SST – low-Re formulation, using and 
without using the wall functions. However, 
the wall shear is more accurate with the 
SST turbulence model; with an error below 
8%, even though the uncertainty in the 
experimental result was 13%. The least 
discrepancy achieved with the  model was 
as high as 18% to the experiment. It was 
also seen that both the turbulence models 

using and without using wall function cannot capture 
turbulence velocity fluctuations. 

Figure 5: Velocity fluctuation at the line 7.2 m from the inlet, 
shown in Fig.1 with the fine grid G1 assuming the eddy 
viscosity model. The fluctuations predicted by CFD is less that 
the experiment. The experimental results are from (Sundstrom, 
et al., 2016). 

Unsteady results
The wall shear stress with single, double and 

superposed pulsating flow was investigated. The 
amplitude and frequency are in accordance with the 
experiment and hence compared here. As the time-
averaged result in the experiment is closely related with 
the steady one, the latter one is only mentioned here for 
comparison. Table 2 shows the investigated cases and its 
values. 

For the unsteady simulation, the time step was chosen 
as the 0.125 s with the total time of 100 s. The RMS and 
maximum Courant number were 2.8 and 11 respectively, 
which is allowable as the second order backward Euler 
scheme; implicit scheme and second order accurate, was 
used in the solution. The maximum frequency in the 
input was 0.4 Hz (for quasi-laminar QL case, see Table 
2), so the time step is chosen as the 20 times smaller than 
the time period. Moreover, the purpose of this simulation 
was to time average the results, hence this time step 
is sufficient for the studies. Therefore, no temporal 

Low fre-
quency 

(LF)

Intermediate
F r e q u e n c y 

(IF)

Q u a s i 
laminar 

(QL)
LF & IF

LF & 
QL

IF & 
QL

f (Hz)
0.04 0.08 0.4

0.04 & 
0.08

0.04 & 
0.4

0.08 & 
0.4

l+
s 25 18 8 25 &18 25 & 8 18 & 8

Amplitude 
(% of bulk 
flow rate)

10 10 7.5 10 & 10 10 10 & 7.5

Table 2: Simulated condition according with the experiment in 
(Sundstrom, et al., 2016). l+s is the Stokes length normalized 
in wall units given by l+s= √2/ω+, ω+ is the angular forcing/
pulsating frequency scaled in wall units and given by ω+= ωυ/u-

2
T. Here u ̅τ is the time averaged friction velocity.

Figure 7: Single frequency (left) and superposed frequency (right) 
time-averaged results compared with the steady experimental 
results from (Sundstrom, et al., 2016). The time averaged results 
are in good agreement with the experiment.
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