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1.  iNtroduCtioN 
Recently, based on a fixed-point theorem in cones, Li et al [1, 2] 
investigated the periodicity of the following scalar system :                                  
y(t) = –a(t)y(t) + g(t, y(t–τ(t)));     t≠tj,     j∈Z,   
 y(tj+)=y(tj–)+lj(y(tj)), …………………… (i)
where  a∈C(R, (0, ∞)),  τ∈C(r, r),  g∈C(r×[0, ∞), [0, ∞)),  
lj∈C([0, ∞), [0, ∞)),  j∈Z and a(t) & τ(t) are ω-periodic functions 
and g(t, y) is ω-periodic with respect to its first argument. It is 
well known that system (i) includes many mathematical ecological 
models.

Also by using Krasnoselsii’s fixed-point theorem and upper & 
lower solutions method Zhu and Li [3] found some sets of positive 
values λ determining that there exist positive T-periodic solutions 
to the higher dimensional differential equation of the form :
x(n+1) = A(n)x(n) + λh(n)f(x(n–τ(n)));     n∈Z,                                      
where  A(n)=diag [a1(n), a2(n), a3(n), …, am(n)],  h(n)=diag [h1(n), 
h2(n), h3(n), …, hm(n)],  aj, hj:Z→r+,  τ:Z→Z are T-periodic,  
j=1, 2, 3, …, m,  t≥1,  λ>0,  x:Z→rm,   f:r+m→r+m  and  
r+m={(x1, x2, x3, …, xm)T∈rm, xj≥0, j=1, 2, 3, …, m}.

Motivited by the above, in this paper, we consider the following 
system :
x∆(t) = A(t)x(t) + f(t, xt);     t≠tj,     j∈Z,     t∈t,  
 x(tj+)=x(tj–)+lj(x(tj)),           (ii)

where t is a ω-periodic time scale,  A(t)=(aij(t))n×n,  t∈t,  is 
a non-singular matrix with continuous real-valued functions as 
its elements and  A(t+ω)=A(t).  f=(f1, f2, f3, …, fn)T is a function 
defined on  t×C(t, rn)→rn  satisfying  f(t+ω, xt+ω)=f(t, xt)  
for all  t∈t having  xt∈C(t, rn)  and  xt(s)=x(t+s)  for all  s∈t,  
x(tj+) and x(tj–) representing the right and the left limits of x(tj) 
in the sense of time scales. In addition, if tj is right-scattered, 
then  x(tj+)=x(tj)  whereas if tj is left-scattered,  x(tj–)=x(tj); 

)l...,,l,l,l(l
n321 jjjjj = T∈C(rn, rn),  j∈Z.  We assume that 

there exists a positive integer ‘p’ such that tj+p=tj+ω  and  lj+p=lj  
where  j∈Z.  For each interval l of r we denote  lt=l∩t.  Without 
loss of generality we also assume that  [0, ω)t∩{tj, j∈Z}={t1, t2, 
t3, …, tp}.

Our aim is to use the Avery-Peterson theorem [4] for cones to 
establish the necessary cr iteria for having the positive periodic 
solutions of (ii). In the present article for each  x=(x1, x2, x3, …, 
xn)T∈C([0, ω]t, rn)  the norm of ‘x’ is defined as  |x|=sup t∈[0, 
ω]t|x(t)|0,  where  |x(t)|0=Σi=1n|xi(t)|,  and when it comes to that 
x(t) is continuous, delta derivative, delta integrable and so forth, 
we mean that each element xi is continuous, delta derivative, delta 
integrable and so forth.

In Section 2 we introduce some notations and definitions and state 
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some preliminary results needed in the next section. In Section 3 
we have established our main results for positive periodic solutions. 
Section 4 provides a brief conclusion.

2.  Basic Formalism
Let t be a non-empty closed subset (time scale) of r. The forward 
and backward jump operators  σ, ρ:t→t  and the graininess  
µ:t→r+  are defined respectively by σ(t) = inf {s∈t:s>t};     
ρ(t) = sup {s∈t):s<t};     µ(t) = σ(t)t. A point  t∈t  is called 
left-dense if  t>inf t & ρ(t)=t,  right-dense if  t<sup t & σ(t)=t,  
left-scattered if  ρ(t)<t  and right-scattered if  σ(t)>t.  If t has a 
left-scattered maximum ‘m’, then  tk=t\{m};  otherwise  tk=t.  
If t has a right-scattered minimum ‘m’,  tk=t\{m};  otherwise  
tk=t.

A function  f:t→r  is right-dense continuous provided that it is 
continuous at right-dense point in t and its left-side limits exist at 
left-dense points in t. If ‘f’ is continuous at each right-dense as 
well as left-dense point, then it is said to be a continuous function 
of t. The set of continuous functions  f:t→r  will be denoted by 
C(t)=C(t, r).

For  y:t→r  and  t∈tk  we define the delta derivative of y(t), y∆(t), 
to be the number, if it exists, with the property that for a given  ε>0  
there exists a neighbourhood U of ‘t’ such that  |[y(σ(t))–y(s)]–
y∆(t)[σ(t)–s]|<ε|σ(t)–s|  for all  s∈U.  If ‘y’ is continuous, then it 
is right-dense continuous and if it is delta differentiable at ‘t’, then 
it is continuous at ‘t’.
Let ‘y’ be right-dense continuous. If  y∆(t)=y(t),  then we define 
the delta integral by

  

€ 

y(s)Δs = Y (t)
a

t

∫ − Y (a).

We say that a time scale t is periodic if there exists  p>0  such 
that if  t∈t,  then t±p∈t.  For  T≠R,  the smallest positive ‘p’ is 
called the period of time scale.

Let  t∈r  be a periodic time scale with period ‘p’. We say that 
the function  f:t→r  is periodic with period ω if there exists a 
natural number ‘n’ such that  ω=np  and  f(t+ω)=f(t)  for all  t∈t.  
If t is ω-periodic, then  σ(t+ω)=σ(t)+ω  and µ(t) is a ω-periodic 
function.

A n×n matrix-valued function A on a time scale t is defined as 
regressive with respect to t provided that  l+µ(t)A(t)  is invertible 
for all  t∈tk.

Let  to∈T  and A is a regressive n×n matrix-valued function. The 
unique matrix-valued solution 
Y∆ = A(t)Y;     Y(to)=l,                                                                          

where ‘l’ denotes as usual the n×n identity matrix, is called the 
matrix exponential function at to and denoted by eA(., to).

Now, let us introduce the lemma : if A is a regressive n×n matrix-
valued function of t, then  e0(t, s)≡l;  eA(t, t)≡l;  ea(σ(t), s)=(l+µ(t)
A(t))eA(t, s);  eA(t, s)=eA–l(s, t)  and  eA(t, s)eA(s, r)=eA(t, r). 

We consider another lemma : let A be a regressive n×n matrix-
valued function of t and suppose  f:t→rn  is continuous and  
to∈T;  then                                                      
y∆ = A(t)y + f(t);     y(to)=y0,                                                                                                                                        
has a unique solution  y:t→rn  given by

y(t) = eA(t, to)yo + 
    

€ 

eA(t, σ(τ)) f (τ)Δτ
t0

t

∫ .                                                   

From the above it follows that f(t, xt) is a continuous function of 
‘t’ for each x∈C(t, rn);  for any  L>0  and  ε>0  there exists  δ>0  
such that  {x, y∈C(t, rn), |x|≤L, |y|≤L, |x–y|≤δ}  implying  f(t, 
xt)–f(t, yt)|0<ε &   

€ 

∀tє[0, ω]t  and the coefficient matrix A is a 
regressive n×n matrix-valued function of t.

Let X be a Banach space and K a closed non-empty subset of X. 
K is defined as a cone if  αu+βv∈K  for all  u, v∈K  and all  α, 
β≥0;  u, –u∈K  implying  u=0.

We define  Kr={x∈K|׀x׀≤r}.  Let α(x) denotes the positive 
continuous concave functional on K i.e.  α:K→[0, +∞)  is 
continuous satisfying 
α(λx + (1 – λ)y) ≥ λα(x) + (1 – λ)α(y);     x, y∈K,     0<1.                    
Then we donate  set K(α, a, b)={x|x∈k, a≤α(x), |x|≤b}.

Let γ and θ are non-negative continuous convex functionals on K. 
Consider α to be a non-negative continuous concave functional 
on K and ψ a non-negative continuous functional on K. Then for 
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positive real numbers a, b, c and d we define the following convex 
sets :
 K(γ, d) = {x∈K|γ(x)<d},
 K(γ, α, b, d) = {x∈K|b≤α(x), γ(x)≤d},
 K(γ, θ, α, b, c, d) = {x∈K|b≤α(x), θ(x)≤c, γ(x)≤d}                                                                                       
 and a closed set  R(γ, ψ, a, d)={x∈K|a≤ψ(x), γ(x)<d}.

Avery-Peterson fixed-point theorem is important for getting the 
main result : let γ and θ are non-negative continuous convex 
functionals on K, α a non-negative continuous concave functional 
on K and ψ a non-negative continuous functional on K satisfying  
ψ(ρx)≤ρψ(x)  for  0≤ρ≤1  such that for some positive numbers E 
and ‘d’,  α(x)≤ψ(x)  and |x|≤Eγ(x)*  for all  x∈K(γ, d)-.  Suppose 
that  H:K(γ, d)-→K(γ, d)-  is completely continuous and there exist 
positive numbers a, b and c with  a<b  such that  {x∈K(γ, θ, α, b, 
c, d)|α(x)>b}≠Ø & α(Hx)>b  for  x∈K(γ, θ, α, b, c, d);  α(Hx)>b  
for  x∈K(γ, α, b, d)  with  θ(Hx)>c  and  0∉R(γ, ψ, a, d) & 
ψ(Hx)<a  for  x∈R(γ, ψ, a, d)  with  ψ(x)=a.  Then H has at least 
three fixed points  x1, x2, x3∈K(γ, d)-  such that  γ(xi)≤d  for  i=1, 
2, 3  giving
b < α(x1),     a < ψ(x2),     α(x2) < b,     ψ(x3) < a.                                        

In order to obtain the existence of periodic solutions of system (ii) 
we make the following preparations. Let us define  PC(t)={x=x1, 
x2, x3, ---, xn}T:t→rn|xi|[tj, tj+1)t∈C((tj, tj+1)t, r), �x(tj–
)=x(tj)x(tj+), j∈Z, i=1, 2, 3,  ---, n}.                                                                                                                           

Now, set
X = {x(t):x(t)∈PC(t), x(t+ω)=x(t)}                                                   
with the norm defined by  |x|=sup t∈[0, ω]t|x(t)|0,  where  
|x(t)|0=Σi=1n|xi(t)|.  Then X is a Banach space.

For convenience we introduce the following notations :
G(t, s)eA(σ(s), s)=[eA(0, ω)–l]–1eA(t, σ(s))eA(σ(s), s)=[eA(0, 
ω)–l]–1eA(t, s)=E(t,  s):=(Eik)n×n  for  t, s∈t,     i, k=1, 2, 3, ---, 
n;     
A0:=min 1≤i, k≤n inf s, t∈[0, ω]t|Gik(t, s)|;
B0:=max 1≤i, k≤n sup s, t∈[0, ω]t|Gik(t, s)|;
A1:=min 1≤i, k≤n inf s, t∈[0, ω]t|Eik(t, s)|;
B1:=max 1≤i, k≤n sup s, t∈[0, ω]t|Eik(t, s)|;
A2:=min {A0, A1};

B2:=max {B0, B1};
A3:=min 1≤k≤n inf s, t∈[0, ω]t|Σi=1nGik(t, s)|;
B3:=max 1≤k≤n sup s, t∈[0, ω]t|Σi=1nGik(t, s)|;
A4:=min 1≤k≤n inf s, t∈[0, ω]t|Σi=1nEik(t, s)|;
B4:=max 1≤k≤n sup s, t∈[0, ω]t|Σi=1nEik(t, s)|;
A5:=min {A3, A4};
B5:=max {B3, B4}.

Hereafter we assume that  Ai>0 & B1>0  for  i=0, 1, 2, ---, 5  and  
Gikfk>0  &  Eikljk>0  for all  i, k=1, 2, 3, ---, n  &  j∈Z.  Let  
K={x=(x1, x2, x3, ---, xn)T∈X:xi≥δ|xi|, t∈[0, ω]t, i=1, 2, 3, ---, 
n},  where  δ=A2/B2∈(0, 1)  and A2 & B2 are as defined above. 
Obviously, K is a cone in X.

We claim that
eA(σ(s+ω), t+ω) = eA(σ(s), t).

In fact  eA(σ(s+ω), t+ω)=eA(σ(s)+ω, t+ω)=A(σ(s), t).  Similarly, 
we can get  eA(t+ω, σ(s+ω))=eA(t, σ(s))  implying  G(t+ω, 
s+ω)=G(t, s).

Now, define a mapping H by

(Hx)(t) =
    

€ 

G (t, s) f (s, xs )Δst

t+ω

∫ + Σj:tj∈[t, t+ω)tG(t, tj)
eA(σ(tj), tj)lj(x(tj)),

⇒ (Hx)(t) =
    

€ 

G (t, s) f (s, xs )Δst

t+ω

∫ + Σj:tj∈[t, t+ω)tE(t, tj)
lj(x(tj)) 
for all  x∈K  and  t∈t.  Then,
(Hx)(t) = ((H1x)(t), (H2x)(t), (H3x)(t),  ---, (Hnx)(t))T,

where  (Hix)(t)=
 
    

€ 

Σk =1nGik fk (s, xs )Δst

t+ω

∫ + Σj:tj∈[t, t+ω)
tΣk=1nEikljk(x(tj)).

3.  result
We, now, fix  η, l∈[0, ω]t,  η≤l,  and let the non-negative 
continuous concave functional α, the non-negative continuous 
concave function ψ and the non-negative  continuous functionals 
γ and θ are defined on the cone K by 
α(x)=inf t∈[η, l]t|x(t)|0,
ψ(x)=θ(x)=sup t∈[0, ω]t|x(t)|0,
γ(x)=sup t[0, ω]t|(φx)(t)|0
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respectively, where  (φx)(t)=
    

€ 

h(t, s)x(s)Δs
0

ω

∫  and  h(t, 
s)∈C(t2, r).

The functionals defined above satisfy the following relations :
α(x) ≤ ψ(x) = θ(x);  

€ 

∀x∈K.

We recall the lemma : for  x∈K  there exists a constant  E>0  
such that sup t∈[0, ω]t|x(t)|0≤E sup t∈[0, ω]t|(φx)(t)|0.
Moreover, for each  x∈K,
|x|=sup t∈[0, ω]t|x(t)|0≤sup t∈[0, ω]t|(φx)(t)|0Lδ=Eγ(x) 
……………………  (iii)   

We also find that  ψ(ρx)=ρψ(x)  for    

€ 

∀ρ∈[0, 1]t  for all  x∈K.  
Therefore, by (iii) the condition (ii) of Avery-Peterson fixed-point 
theorem is satisfied.

Hence, the criteria for having the solutions of the higher dimensional 
differential equations for cones with impulses on time scales are 
that there exist constants a, b, d>0 with  a<b<b/δ<d/L  such that
(1)  |f(t, u)|0 < d/B5Lω – l1M/ω  for  0≤|u|0≤Ed,  t∈[0, ω]t,
(2)  |f(t, u)|0 > b/A5ω – lm/ω  for  b≤|u|0≤b/δ,  t∈[η, l]t and
(3)  |f(t, u)|0 < a/B5ω – l2M/ω  for  0≤|u|0≤a,  t∈[0, ω]t,

where              l1M=max 0≤|u|0≤EdΣj=1p|lj(u)|0,
                        l2M=max 0≤|u|0≤aΣj=1p|lj(u)|0 
and                  lm=min b≤|u|0≤b/δΣj=1p|lj(u)|0.

4.  Conclusion
By using a multiple fixed-point theorem i.e. Avery-Peterson 
theorem for cones some criteria are established for the existence 
of positive periodic solutions for a class of higher dimensional 
functional differential equations with impulses on time scales of 
the following form :                                                                                         
x∆(t) = A(t)x(t) + f(t, xt);     t≠tj,     t∈t,     x(tj+)=x(t+)+lj(x(tj)),
where  A(t)=(aij(t))n×n  is a non-singular matrix with continuous 
real-valued functions as its elements. The yield thus obtained is 
meant for the feasibility and effectiveness of the results. 
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