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Abstract : In general, we know that there are four states of matter solid, liquid, gas and plasma. But there are much more 
states of matter. For e. g. there are ferromagnetic states of matter as revealed by  the phenomenon of magnetization and 
superfluid states defined by the phenomenon of zero viscosity. The various phases in our colorful world are so rich that it is 
amazing that they can be understood systematically by the symmetry breaking theory of Landau. Topological phenomena 
define the topological order at macroscopic level. Topological order need new mathematical framework to describe it. 
More recently it is found that at microscopic level topological order is due to the long range quantum entanglement, just 
like the fermions fluid is due to the fermion-pair condensation. Long range quantum entanglement leads to many amazing 
emergent phenomena, such as fractional quantum numbers, non- Abelian statistics ad perfect conducting boundary 
channels. It can even provide a unified origin of light and electron i.e. gauge interactions and Fermi statistics. Light waves 
(gauge fields) are fluctuations of long range entanglement and electron (fermion) are defect of long range entanglements.
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1. Introduction  

In physics, topological order is a kind of order in zero-
temperature phase of matter also known as quantum matter. 
Macroscopically, topological order is defined/described by 
robust ground state degeneracy and quantized geometric 
phases of degenerate ground states. Microscopically, 
topological order corresponds to patterns of long-range 
quantum entanglement . States with different topological 
orders or different patterns of long range entanglements 
cannot change into each other without a phase transition.
Topologically ordered states have some interesting 
properties, such as (1) topological degeneracy and fractional 
statistics that can be used to realize topological quantum 
computer;(2) perfect conducting edge states that may have 
important device applications; (3) emergent gauge field and 
Fermi statistics that suggest a quantum information origin of 
elementary particles ; (4) topological entanglement entropy 
that reveals the entanglement origin of topological order, 
etc. Topological order is important in the study of several 
physical systems such as spin liquids, the quantum Hall 
effect , along with potential applications to fault-tolerant 
quantum computation.
We note that topological insulators and topological 
superconductors (beyond 1D) do not have topological order 
as defined above.

2. Background

Although all matter is formed by atoms , matter can have 
different properties and appear in different forms, such 
as solid , liquid , superfluid, magnet, etc. These various 
forms of matter are often called states of matter or phases . 
According to condensed matter physics and the principle of 
emergence , the different properties of materials originate 
from the different ways in which the atoms are organized 
in the materials. Those different organizations of the atoms 
(or other particles) are formally called the orders in the 
materials.
Atoms can organize in many ways which lead to many 
different orders and many different types of materials. 
Landau symmetry-breaking theory provides a general 
understanding of these different orders. It points out that 
different orders really correspond to different symmetries 
in the organizations of the constituent atoms. As a material 
changes from one order to another order (i.e., as the material 
undergoes a phase transition), what happens is that the 
symmetry of the organization of the atoms changes.
For example, atoms have a random distribution in a liquid , so 
a liquid remains the same as we displace atoms by an arbitrary 
distance. We say that a liquid has a continuous translation 
symmetry . After a phase transition, a liquid can turn into a 
crystal . In a crystal, atoms organize into a regular array (a 
lattice). A lattice remains unchanged only when we displace 
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it by a particular distance (integer times of lattice constant 
), so a crystal has only discrete translation symmetry . The 
phase transition between a liquid and a crystal is a transition 
that reduces the continuous translation symmetry of the 
liquid to the discrete symmetry of the crystal. Such change 
in symmetry is called symmetry breaking. The essence of 
the difference between liquids and crystals is therefore that 
the organizations of atoms have different symmetries in the 
two phases.
Landau symmetry-breaking theory is a very successful 
theory. For a long time, physicists believed that Landau 
symmetry-breaking theory describes all possible orders in 
materials, and all possible (continuous) phase transitions.

3 Discovery and characterization

However, since late 1980s, it has become gradually apparent 
that Landau symmetry-breaking theory may not describe all 
possible orders. In an attempt to explain high temperature 
superconductivity  the chiral spin state was introduced. At 
first, physicists still wanted to use Landau symmetry-breaking 
theory to describe the chiral spin state. They identified the 
chiral spin state as a state that breaks the time reversal and 
parity symmetries, but not the spin rotation symmetry. This 
should be the end of story according to Landau's symmetry 
breaking description of orders. However, it was quickly 
realized that there are many different chiral spin states 
that have exactly the same symmetry, so symmetry alone 
was not enough to characterize different chiral spin states. 
This means that the chiral spin states contain a new kind 
of order that is beyond the usual symmetry description. 
The proposed, new kind of order was named "topological 
order". The name "topological order" is motivated by the 
low energy effective theory of the chiral spin states which is 
a topological quantum field theory (TQFT). New quantum 
numbers, such as ground state degeneracy and the geometric 
phase of degenerate ground states, were introduced to 
characterize/define the different topological orders in chiral 
spin states. Recently, it was shown that topological orders 
can also be characterized by topological entropy.
But experiments soon indicated that chiral spin states do not 
describe high-temperature superconductors, and the theory 
of topological order became a theory with no experimental 
realization. However, the similarity between chiral spin 
states and

quantum Hall states allows one to use the theory of 
topological order to describe different quantum Hall states.  
Just like chiral spin states, different quantum Hall states 
all have the same symmetry and are beyond the Landau 
symmetry-breaking description. One finds that the different 
orders in different quantum Hall states can indeed be 
described by topological orders, so the topological order 
does have experimental realizations.
The fractional quantum Hall (FQH) state was discovered in 
1982 before the introduction of the concept of topological 
order in 1989. But the FQH state is not the first experimentally 
discovered topologically ordered state. The superconductor 
, discovered in 1911, is the first experimentally discovered 
topologically ordered state, which has topological order . 
Although topologically ordered states usually appear in 
strongly interacting boson/fermion systems, a simple kind 
of topological order can also appear in free fermion systems. 
This kind of topological order corresponds to integral 
quantum Hall state, which can be characterized by the Chern 
number of the filled energy band if we consider integer 
quantum Hall state on a lattice. Theoretical calculations 
have proposed that such Chern numbers can be measured 
for a free fermion system experimentally. It is also well 
known that such a Chern number can be measured (may be 
indirectly) by edge states.

4. Mechanism

A large class of 2+1D topological orders is realized through 
a mechanism called string-net condensation. This class of 
topological orders can have a gapped edge and are classified 
by unitary fusion category (or monoidal category ) theory. 
One finds that string-net condensation can generate infinitely 
many different types of topological orders, which may 
indicate that there are many different new types of materials 
remaining to be discovered.
The collective motions of condensed strings give rise to 
excitations above the string-net condensed states. Those 
excitations turn out to be gauge bosons. The ends of strings 
are defects which correspond to another type of excitations. 
Those excitations are the
gauge charges and can carry Fermi or fractional statistics .
The condensations of other extended objects such as 
"membranes ", "brane-nets",  and fractals also lead to 
topologically ordered phases and "quantum glassiness".

Topological Order in Physics



 110 The Himalayan Physics Vol. 6  & 7,  April 2017

Examples of topologically ordered states
3D s-wave superconductors (Many textbooks ignore the 
dynamical U(1) gauge field and treat 3D superconductors as 
symmetry breaking states.)
Integer quantum Hall states (Those topological orders have 
no fractionalized quasiparticles excitations and are called 
invertible topological orders.)
Fractional quantum Hall states (which have fractionalized 
quasiparticles which fractional charges and fractional 
statistics or even non-abelian statistics. Chern-Simons gauge 
theories are their low energy effective theory )
Chiral spin state (which can be viewed as fractional-
quantum-Hall analogue in spin liquids, with Chern-Simons 
gauge theory as low energy effective theory)
Z2-topological order or Z2 spin liquid (with Z2 gauge theory 
as low energy effective theory.
Herbertsmithite may realize such Z2 spin liquid.)

5. Mathematical Foundation

We know that group theory is the mathematical foundation 
of symmetry breaking orders. What is the mathematical 
foundation of topological order? It was found that a subclass 
of 2+1D topological orders—Abelian topological orders—
can be classified by a K-matrix approach. The string-net 
condensation suggests that tensor category (such as fusion 
category or monoidal category ) is part of the mathematical 
foundation of topological order in 2+1D. The more recent 
researches suggest that (up to invertible topological orders 
that have no fractionalized excitations):
2+1D bosonic topological orders are classified by unitary 
modular tensor categories.
2+1D bosonic topological orders with symmetry G are 
classified by G-crossed tensor categories.
2+1D bosonic/fermionic topological orders with symmetry 
G are classified by unitary braided fusion categories over 
symmetric fusion category, that has modular extension. 
Topological order in higher dimensions may be related 
to n-Category theory. Quantum operator algebra is a very 
important mathematical tool in studying topological orders.
Some also suggest that topological order is mathematically 
described by extended quantum symmetry. .                                                                  
Applications
The materials described by Landau symmetry-breaking 
theory have had a substantial impact on technology. For 

example, ferromagnetic materials that break spin rotation 
symmetry can be used as the media of digital information 
storage. A hard drive made of ferromagnetic materials can 
store gigabytes of information. Liquid crystals that break 
the rotational symmetry of molecules find wide application 
in display technology; nowadays one can hardly find a 
household without a liquid crystal display somewhere in 
it. Crystals that break translation symmetry lead to well 
defined electronic bands which in turn allow us to make 
semiconducting devices such as transistors . Different types 
of topological orders are even richer than different types of 
symmetry-breaking orders. This suggests their potential for 
exciting, novel applications.
One theorized application would be to use topologically 
ordered states as media for quantum computing in a 
technique known as topological quantum computing . A 
topologically ordered state is a state with complicated non-
local quantum entanglement . The non-locality means that 
the quantum entanglement in a topologically ordered state 
is distributed among many different particles. As a result, 
the pattern of quantum entanglements cannot be destroyed 
by local perturbations. This significantly reduces the effect 
of decoherence . This suggests that if we use different 
quantum entanglements in a topologically ordered state 
to encode quantum information, the information may last 
much longer. The quantum information encoded by the 
topological quantum entanglements can also be manipulated 
by dragging the topological defects around each other. This 
process may provide a physical apparatus for performing 
quantum computations  Therefore, topologically ordered 
states may provide natural media for both quantum memory 
and quantum computation. Such realizations of quantum 
memory and quantum computation may potentially be made 
fault tolerant .
Topologically ordered states in general have a special property 
that they contain non-trivial boundary states. In many cases, 
those boundary states become perfect conducting channel 
that can conduct electricity without generating heat. This 
can be another potential application of topological order in 
electronic devices.
Similar to topological order, topological insulators also have 
gapless boundary states. The boundary states of topological 
insulators play a key role in the detection and the application 
of topological insulators. This observation naturally leads 
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to a question: are topological insulators examples of 
topologically ordered states? In fact topological insulators 
are different from topologically ordered states defined in 
this article. Topological insulators only have short-ranged 
entanglements and have no topological order, while the 
topological order defined in this article is a pattern of long-
range entanglement. Topological order is robust against 
any perturbations. It has emergent gauge theory, emergent 
fractional charge and fractional statistics. In contrast, 
topological insulators are robust only against perturbations 
that respect time-reversal and U(1) symmetries. Their quasi-
particle excitations have no fractional charge and fractional 
statistics. Strictly speaking, topological insulator is an 
example of SPT order , where the first example of SPT order 
is the Haldane phase of spin-1 chain.

6.  conclusions  

Landau symmetry-breaking theory is a cornerstone of 
condensed matter physics . It is used to define the territory 
of condensed matter research. The existence of topological 
order appears to indicate that nature is much richer than 
Landau symmetry-breaking theory has so far indicated. So 
topological order opens up a new direction in condensed 
matter physics—a new direction of highly entangled 
quantum matter. We realize that quantum phases of matter 
(i.e. the zero-temperature phases of matter) can be divided 
into two classes: long range entangled states and short 
range entangled states. Topological order is the notion 
that describes the long range entangled states: topological 
order = pattern of long range entanglements. Short range 
entangled states are trivial in the sense that they all belong 
to one phase. However, in the presence of symmetry, even 
short range entangled states are nontrivial and can belong to 
different phases. Those phases are said to contain SPT order 
.  SPT order generalizes the notion of topological insulator 
to interacting systems. Some suggest that topological order 
(or more precisely, string-net condensation) in local bosonic 
(spin) models have the potential to provide a unified origin 
for photons , electrons and other elementary particles in our 
universe. 
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