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Electronic and magnetic properties of ternary sulfide

Rb2Mn3S4
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Abstract: Semiconducting materials, especially with a direct band gap, are helpful for modern photovoltaic and opto-
electronic device fabrication. Here, based on density functional theory calculations, we predict the electronic

and magnetic properties of Rb2Mn3S4 by using the full potential local orbital code. Considering different con-

figurations such as nonmagnetic, ferromagnetic, ferrimagnetic, and antiferromagnetic, the magnetic ground
state was found to be ferrimagnetic with the lowest total energy. The calculated effective magnetic moment

is 10µBunit cell (two formula units) resulting from the opposite spin interaction between Mn (I) and Mn (II)
atoms in Rb2Mn3S4. From our calculations, Rb2Mn3S4 is found to be a semiconductor with a direct energy

band gap of 0.75 eV. With the inclusion of the Coulomb interaction (i.e., GGA+U), the band gap is found to

rise to 2.34 eV for U = 4 eV.

Keywords: Density functional theory • Electronic structure • Semiconductor • Magnetism • Density of states •
Magnetic moment

I. Introduction

The solid material whose conductivity lies between the insulator and metal is known as a semiconductor. Si

and Ge are two well-known elemental semiconductors, whereas GaN GaP, GaSb, GaAs, InSb, GaAsSb, AlGaInP,

etc. are some famous examples of compound semiconductors [1]. In compound semiconductors, nonmagnetic

(NM), ferromagnetic (FM), antiferromagnetic (AFM) and ferrimagnetic (FIM) semiconductor are extensively

studied theoretically as well as experimentally [2]. The magnetic semiconductor research is very attractive, due

to its concurrent spontaneous magnetization and semiconducting properties [3–6]. Materials with these qualities

are intriguing to microwave devices [7]. The FM semiconducting material La2NiMnO6 was reported to be near

room temperature based material for spintronics applications. The application of a magnetic field can control

the magnetic, electrical, and dielectric properties [8]. Other FM semiconductors which are predicted through the

density functional theory (DFT) is RbLnSe2 (Ln = Ce, Pr, Nd,Gd) [9]. Similar to the FM semiconductors, AFM

semicondutors are also studied, for instance, S2IrO4. It was experimentally observed that Sr2IrO4 has anisotropic

∗ Corresponding Author: madhav.ghimire@cdp.tu.edu.np
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magnetoresistance [10]. Additionally, a ternary selenide Na2Mn3Se4 is a frustrated AFM semiconductor at 27 K.

It was reported to have an indirect band gap semiconductor with gap size of 1.59 eV [11]. FIM semiconductors

has also been found, such as CaCu3Fe2Sb2O12 [12], CaCu3Fe2V2O12, CaCu3Fe2Ta2O12 [13], and CaCu3Mn4O12

[14], which has a direct band gap, and can utilized in practical applications for photoelectron materials. The

widespread use of magnetic semiconductor can be a result of their excellent efficiency in terms of photocarrier

life times. With the numerous number of possible application but less availability of magnetic semiconductor

materials, we are motivated to explore magnetic materials with semiconducting character.

In this study, we have used the DFT approach to analyze the electronic and magnetic properties of exper-

imentally synthesized Rb2Mn3S4. We predict that the ferrimagnetic semiconductor Rb2Mn3S4 can have a net

magnetic moment of 10 µB per unit cell (two chemical formula unit). With a band gap of 0.75 eV, the material

possesses a direct band gap.

II. Methods

We used the full-potential local orbital code (FPLO) [15], version 18.00-52, within the generalized gradient

approximation (GGA) and with the inclusion of Coulomb interaction, GGA+U approach. A localized atomic basis

and full potential treatment is applied to analyze the electronic band structure and associated characteristics of

Rb2Mn3S4 using DFT. The exchange-correlation energy functional employed is based on Perdew, Burke, and

Ernzerhof’s (PBE-96) [16] parameterization. While considering correlation effects, we have used U = 4 eV for our

system. A 12 Ö 12 Ö 12 k-mesh grid has been used throughout the whole Brillouin zone. The energy convergence

criterion was set to 10−8 eV for the self-consistent calculations.

III. Results and Discussion

Crystal structures

Rb2Mn3S4 (Fig. 1) has been reported to be a body-centered orthorhombic structure with symmetry space

group Ibam (space group no. 72). The structure has three dimensions. Eight equivalent S2− atoms form a body-

centered cubic geometry connection with Rb1+. There exist two different sites of Mn2+. Mn2+ is linked to four

equivalent S2− atoms in the initial Mn2+ site, creating a mixture of edge and corner-sharing MnS4 tetrahedra.

The experimental lattice parameter of Rb2Mn3S4 are a = 5.84Å, b = 11.21Å, c = 13.66Å and angles α = β = γ =

90◦, respectively. The atomic Wyckoff positions are [0.268, 0.119, 0.0] for Rb, [0.0, 0.276, 0.25] for Mn(I), [0.0,

0.0, 0.25] for Mn(II), [0.2183, 0.133, 0.344] for S [17].
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Figure 1. Crystal structure of Rb2Mn3S4

Electronic structure

We start with studying the total and partial density of states (DOS) within GGA for the ferrimagnetic

ground state, as shown in Fig. 2(a) and Fig. 2(b). A band gap of 0.75 eV is observed between the valence

band and the conduction band. The main contributions to the total DOS are seen from the Mn(I)-3d, Mn(II)-

3d and S-3p orbitals around EF . In the conduction region, S-3p and Mn(II)-3d dominate above EF in spin-up

channels, while in spin-down, Mn(I)-3d has significant contributions. On the other hand, below EF , Mn(I)-3d

states significantly contribute to spin-up, while the spin-down channel is contributed by Mn(II)-3d hybridizing

with the S-3p states. Generally, the DFT technique underestimates the size of the electronic band gap. To resolve

this issue, we apply the Hubbard parameter (U), which plays a significant role in handling the delocalized d-bands

resulting in the correct prediction of the experimental band gap. This was done following the literatures [11, 18–20]

, which suggests that the appropriate value of U for Mn is between 3 and 4 eV in most cases. We thus report our

result using 4 eV. The total and partial DOS within GGA+U is shown in Fig. 2(c) and Fig. 2(d). Interestingly,

the Mn-3d states below EF shift far below, with some minor states around EF hybridizing significantly with

the S-3p states. The band gap so formed is of charge-type between the Mn(I) and S-3p states. Focusing now on

the electronic band structure of Rb2Mn3S4 in scalar relativistic mode (see fig. 3(a,b)), both the valence band

maximum (VBM) and the conduction band minimum (CBM) lies at the high-symmetry point Z in the momentum

space dictating that the material Rb2Mn3S4 is a direct band semiconductor. This suggests that electrons can

transfer straight from the VBM to the CBM. In particular, the band gap makes Rb2Mn3S4 an attractive choice

for photovoltaic and optoelectronic devices due to the finite gap size within the visible range [13]. The calculated

energy gap within GGA and GGA+U are 0.75 and 2.34 eV, respectively.
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Figure 2. Total and partial DOS of Rb2Mn3S4 in scalar relativistic mode within GGA and GGA+U (with U=4
eV for Mn).

We further calculate the band gap considering U (for Mn) ranging from 1 to 6 eV. Interestingly, with

increased U, the electronic band gap is shown in Fig. 4. For U = 4 eV, we observed a direct band gap of 2.34 eV.

Magnetic properties

From the total energy calculations, the ferrimagnetic (FIM) configuration is the magnetic ground state with

a total energy difference of 2.6 eV between the FM and FIM states. In the FIM configuration, two inequivalent

Mn atoms MnI and Mn(II), align antiferromagnetically as Mn(I)^-Mn(II)_ interacting with each other via Sn-3p

orbitals. The calculated effective magnetic moments is 10 µB/unit cell with an individual moment of 4.4 µB for

Mn(I) and 4.1 µB for Mn(II), with polarized moment transfer to Sn (0.07 µB) atoms. However, the effective

magnetic moment within GGA+U remains the same (10 µB/unit cell) as that of GGA; the individual moment

rises slightly to 4.8 µB and 4.7 µB for Mn(I) and Mn(II), mainly due to correlation effects. We further consider the

relativistic effect (spin-orbit coupling) to identify the magnetic easy axis along [001], [010], and [100] directions.
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The magnetic easy axis was found along [010] while the hard axis is along [100] direction. The calculated magnetic

anisotropic energy is ∼0.4 meV per unit cell, suggesting the minimal effect of spin-orbit coupling in Rb2Mn3S4.

Figure 3. Electronic band structure of Rb2Mn3S4 in scalar relativistic mode for GGA and GGA+U (with U=4
eV for Mn). The Fermi level is set to zero.

Figure 4. Calculated gap size with the changing value of U in Rb2Mn3S4
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IV. Conclusions

Using the density functional theory approach, we investigate the electronic structure and magnetic properties

of Rb2Mn3S4. The material is found to be a direct band gap magnetic semiconductor with a gap size of 0.75

eV within GGA. The ferrimagnetic Rb2Mn3S4 has a total magnetic moment of 10µB/unit cell. Identifying new

magnetic direct band gap semiconductors opens the door for additional experimental research for this group

of materials that could be used to fabricate valuable devices, including semiconductor lasers, solar cells, and

light-emitting diodes.

V. Acknowledgements

G.B.A. and M.P.G. thanks PD Dr. Manuel Richter, IFW-Dresden, for the fruitful discussion and sug-

gestions. M.P.G. was supported by a grant from UNESCO-TWAS and the Swedish International Development

Cooperation Agency (SIDA). The views expressed herein do not necessarily represent those of UNESCO-TWAS,

SIDA, or its Board of Governors. G.B.A. thanks the Nepal Academy of Science and Technology for the Ph.D.

fellowship. M.P.G. and G.B.A. thanks Ulrike Nitzsche for the technical assistance.

References

[1] Kasap SO, Capper P. Springer handbook of electronic and photonic materials. vol. 11. Springer; 2006.
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