Trichoderma and Its Prospects in Agriculture of Nepal: An Overview

Nabin Pandey, Madhusudhan Adhikhari, Binod Bhantana
Faculty of Agriculture, Agriculture and Forestry University, Rampur, Chitwan, Nepal

Abstract
In the world, the traditional agricultural practices are getting affected by various problems such as disease, pest, drought, decreased soil fertility due to use of hazardous chemical pesticides, pollution and global warming. As a result, there is a need for some eco-friendly bio-control agents that help in resolving the previous mentioned problems. The various types of biological control agents such as bacteria and fungi are involved in bio-control activity. Among them, fungal genus Trichoderma plays a major role in controlling the plant diseases. Species of Trichoderma are diverse fungal microbial community known and explored worldwide for their versatilities as biocontrol and growth promoting agents. These fungi reproduce asexually by production of conidia and chlamydospores and in wild habitats by ascospores. Trichoderma species are efficient mycoparasites and prolific producers of secondary metabolites, some of which have clinical importance. However, the ecological or biological significance of this metabolite diversity is sorely lagging behind the chemical significance. Several Trichoderma spp. positively affect plants by stimulating plant growth, and protecting plants from fungal and bacterial pathogens. They are used in biological plant protection as bio-fungicides as well as in bioremediation. A large number of research groups are working on various aspects of Trichoderma viz., diversity, ecology and their applications. The capacity of Trichoderma fungi to produce lytic enzymes is used in animal feed, and wine making and brewery industries. Trichoderma spp. are the most successful bio-control agents as more than 60% of the registered bio-fungicides used in today’s agriculture belongs to Trichoderma -based formulation. The increase in incidence and severity of diseases and emergence of new diseases causes the significant yield losses of different crops in Nepal. But the research and studies on plant diseases are limited.

Keywords: Bio-control; Crop plants; pathogens; Trichoderma spp.

Introduction
Trichoderma is a genus of fungi in the family hypocreaceae that is present in all soils, where they are the most prevalent culturable fungi. Many species in this genus can be characterized as opportunistic avirulent plant symbionts. This refers to the ability of several Trichoderma species to form mutualistic endophytic relationship with several plant species. The genomes of several Trichoderma species have been sequenced and are publicly available. Nepal is an Agricultural country where about 65% of total people are involved in agriculture. Most of them are dependent in the agriculture for sustaining the life. At present context there are various constraints in Nepalese agriculture. Among them plant diseases one of the major constraints in crop production in Nepal. Plant diseases cause both qualitative as well as quantitative losses in Agriculture with negative impact on the economy of Nepal. Past and the present plant disease scenario indicated that the occurrence of several viruses, fungus, bacteria on cereals, cucurbits, legumes and solanaceous vegetables and other crops in epidemic form in the country. The incidence and severity of disease is...
Increasing. New diseases are also emerging. Research and studies on plant diseases are limited in Nepal. In recent years, diseases caused significant yield losses. Disease has created a threat for production and productivity of important crop plants. Deteriorate both quality and quantity of produce and ultimately reduces market price and affect the national economy of the country. Many farmers in Nepal are not aware of pesticide level of poisoning, safety precautions and potential hazards on health and environment and agriculture field. According to 2012 survey the estimate, the yearly import of pesticides in Nepal is about 211ta.i. with 29.19% insecticides, 61.38% fungicides, 7.43% herbicides and 2% others (Fig. 1). The gross sale value accounts US$ 3.05 million per annual. Injudicious and indiscriminate use of pesticides and presence of pesticide residues in food, fruits, vegetables and environment is a matter of grave concerns.

![Fig. 1: Trends of insecticides, fungicides and herbicides consumption in Nepal (Sushma, et al., 2015)](image)

Table 1: Management of plant pathogens/diseases by different *Trichoderma* species in major crops

<table>
<thead>
<tr>
<th>SN</th>
<th>Crop</th>
<th>Pathogen/disease</th>
<th>Trichoderma spp</th>
<th>Types of treatment</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bambo (Dendrocalamus Calostachyus)</td>
<td>Polyporus Sanguineus</td>
<td>Trichoderma lingorum, T. harzianum, T. viride</td>
<td>Soil</td>
<td>Kundu and Chaterjee, 2003</td>
</tr>
<tr>
<td>3</td>
<td>Brinjal (Solanum melongena L.)</td>
<td>Fusarium solani, F. oxysporium f. sp</td>
<td>T. harzianum, T. viride</td>
<td>Seed and soil</td>
<td>Balaji and Ahir, 2011</td>
</tr>
<tr>
<td>4</td>
<td>Cabbage (Brassica oleracea L. var capitata)</td>
<td>S. sclerotiorum, Rhizoctonia solani</td>
<td>T. harzianum, T. viride</td>
<td>Soil and seed</td>
<td>Sharma et al., 2001; Sharma et al., 2003</td>
</tr>
<tr>
<td>5</td>
<td>Capsicum (Capsicum annuum L.)</td>
<td>Alternaria alternata</td>
<td>T. harzianum, T. viride</td>
<td>Seed</td>
<td>Kapoor, 2008</td>
</tr>
<tr>
<td>6</td>
<td>Cardamom (Elettaria cardamomum)</td>
<td>Pythium vexans, R. solani</td>
<td>T. harzianum, T. viride</td>
<td>Bed soil</td>
<td>Bhai and Thomas, 2010</td>
</tr>
<tr>
<td>7</td>
<td>Carnation (Dianthus caryophyllus)</td>
<td>F. oxysporium f. sp. dianthi</td>
<td>T. harzianum</td>
<td>Seed</td>
<td>Kapoor, 2008</td>
</tr>
<tr>
<td>8</td>
<td>Cauliflower (Brassica oleracea L. var. botrytis)</td>
<td>R. solani</td>
<td>T. harzianum, T. viride</td>
<td>Fungicide and soil</td>
<td>Sharma et al., 2001; Sharma et al., 2003</td>
</tr>
</tbody>
</table>
Table 1: Management of plant pathogens/diseases by different *Trichoderma* species in major crops

<table>
<thead>
<tr>
<th>SN</th>
<th>Crop</th>
<th>Pathogen/disease</th>
<th>Trichoderma spp</th>
<th>Types of treatment</th>
<th>References</th>
</tr>
</thead>
</table>
| 9 | Chickpea (*Cicer arientum L*) | *F. oxysporium f.sp ciceris*
R. solani
S. rolfsii
Macrophomina phaseolina
Botrytis cinerea | *T. harzianum*
T. viride
Trichoderma ressei | Soil and seed | Mukherjee *et al.*, 1997
Pandey, 2003 |
| 10 |Chilli (*Capsicum annum L*) | *F. oxysporium*
Pythium spp
R. solani | *T. harzianum*
T. viride | Soil and seed | Rini and Sulochana, 2006
Kapoor, 2008 |
| 11 |Citrus | *F. solani* | *T. harzianum*
T. viride | Foliar | Kalita *et al.*, 1996
Singh *et al.*, 2000 |
| 12 |Coconut (*cocos nucifera L*) | *Ganoderma lucidum* | *T. harzianum*
T. viride
Trichoderma ressei | Foliar | Karthikeyan *et al.*, 2006 |
| 13 |Coffee (*Coffea arabica L*) | *Phomopsis thaeeae*
Glomerella cingulate | *T. harzianum* | Seed | Deb and Dutt, 1999 |
| 14 |Cotton (*Gossypium hirsutum*) | *R. solani*
S. rolfsii
P. aphanidermatum | *T. harzianum*
T. viride | Seed and soil | Sreenivasaprasad, 1990
Gaur *et al.*, 2005 |
| 15 |Cowpea (*vigna sinensis*) | *R. solani* | *T. harzianum* | Seed | Pan and Das, 2011 |
| 16 |Fenugreek (*Trigonella foenum graecum L*) | *P. aphanidermatum*
S. sclerotiorum | *T. harzianum*
T. viride | Seed and soil | Trivedi *et al.*, 2010 |
| 17 |Ginger (*Zingiber officinale*) | *P. aphanidermatum* | *T. harzianum* | Seed, soil and foliar | Gupta *et al.*, 2010 |
| 18 |Grapes (*vitis vinifera*) | *Penicillium expansum*
* Fusarium moniliforme*
B. subtilis | *T. harzianum*
T. viride | Seed and soil | Senthil *et al.*, 2011 |
| 19 |Groundnut (*Arachis hypogaea L*) | *S. rolfsii Sacc.*,
A. niger
R. solani | *T. longibrachiatum*
T. harzianum
T. viride | Seed and soil | Sreedevi *et al.*, 2012
Biswas and Sen, 2000 |
| 20 |Guava (*Psidium guajava L*) | *F. oxysporum f.sp. Psidii*
* Macrophomina Phytophthora* | *T. harzianum*
T. viride | Soil | Pandey and Dwivedi, 1987
Misra, 2007 |
| 21 |Jute (*Corchorus olitorius*) | *Macrophomina Alterneria alternata* | *T. harzianum*
T. viride | Soil and foliar | Bhandari *et al.*, 2013 |
| 22 |Maize (*Zea mays*) | *P. notatum*
R. solani
Alterneria alternata | *T. harzianum*
T. viride | Seed and foliar | Bhandari *et al.*, 2013 |
| 23 |Mango (*Mangifera indica L*) | *Pestalotia sp.*
A. flavus
C. gloeosporioides | *T. reesei*
T. harzianum
T. viride | Seed and foliar | Bhuvaneshwari and Rao, 2001 |
| 24 |Mushroom | *Rhizopus stolonifer* | *T. viride* | Foliar | Rawal *et al.*, 2013 |
| 25 |Mustard (*Brassica juncea L*) | *Azospirillum*
P. palmivora | *T. viride*
T. harzianum | Seed | Patni *et al.*, 2005
Meena *et al.*, 2004
Meena *et al.*, 2011 |
| 26 |Onion (*Allium cepa*) | *A. alternate*
S. vesicarium
Cladosporium allii-cepae | *T. viride*
T. reesei
T. harzianum | Soil, seed, Seedling dip | Mishra and Gupta, 2012
Prakash and Sharma, 2012 |
| 27 |Rice (*Oryza sativa*) | *R. solani Fusarium spp* | *T. viride*
T. harzianum | Seed | Bhat *et al.*, 2009
Chakravarthy *et al.*, 2011 |
Trichoderma as Bio-control Agent for Different Crop Diseases

Cereal Crops

Rice (Oryza sativa L.)

Rice dominates the country’s crop sector accounting for over 42.5 percent (168,047 ha) of the total area under food grains and shares 51.6 percent in total food grain production (MOAD, 2017). As the most important staple food of Nepalese people, rice supplies about 40% of the food calorie intake and contributes nearly 20% to the agricultural gross domestic product (AGDP) and almost 7% to GDP (DoAC/DD, 2015). Rice only accounts for more than 50% of the total calories of Nepalese people (Kharel et al., 2018). But its production is constrained by diseases of fungal, bacterial and viral origins. Species of Trichoderma, T. harzianum, T. viride, T. reesei, T. longibrachitum and T. koningii in combination with chemical control was evaluated by many researchers finding them effective against these diseases. Sheath blight of rice incited by Rhizoctonia solani is one of the common and destructive diseases of rice. There are several important reports on the biological management of this disease. A study reported that the rice seed treated with two antagonistic fungi, viz., T. viride tode (Harz) and T. harzianum rifai along with chemicals were found effective to control sheath blight of rice and increase the yield of the crop (Das and Hazarika, 2000). The use of Trichoderma inoculation as a seedling treatment can help to enhance rice production and productivity in Nepal, especially in conjunction with SRI methods and even more so with organic fertilization, which in this integrated system of rice cultivation can reduce the use and cost of chemical fertilizer. In such a system under the prevailing soil and climatic conditions, an indigenous heirloom rice variety was able to outperform in both agronomic and economic terms the more modern improved variety. (Khadka and Uphoff, 2019)

Maize (Zea mays L.)

Maize is second most important crop after rice in terms of area and production in Nepal. Maize shares 24.93% in total edible cereal grain production. At present, it is cropped in an area of 891,583ha with production of 2,231,517Mt (MOAD, 2017). In the context of Nepal, the importance of maize increase with altitude, eventually standing as a staple crop in northern part of the country (KC et al., 2015). It is another important cereal crop which suffers from soil borne and foliar pathogens. Some attempts have been made on the use of Trichoderma against important diseases of maize. Investigations made by (Sankar and Sharma, 2001) clearly indicated the performance of T. viride in in vitro and in vivo conditions which suppressed the charcoal rot disease caused by Macrophomia phaseolina and also enhanced the growth of crop. After a decade, (Khdekar et al., 2010) evaluated the efficacy of T. harzianum against leaf blight caused by Helminthosporium turcicum and found similar results.

Wheat (Triticum spp. L.)

Wheat is the third most important crop after rice and maize in Nepal; it’s cultivated in 762 373 hectares with an average national yield of 2.55 t/ha (MOAD, 2017) and is an important source of carbohydrates, proteins, vitamins and minerals. Among the biotic constraints, smut diseases cause significant loss of yield, and quality of the grains. First report of use of bio-control of seed borne disease, i.e. loose smut of wheat was shown by (Aggarwal et al. 1991), who used T. viride as seed treatment. Trichoderma species viz., T. viride (TV5), T. koningii, T. hamatum, T. harzianum and T. lignorum were found to inhibit germination of chlamydospores of wheat pathogen U. segetum. var. tritici (Mondal et al., 1995). When Trichoderma and NPK are accompanied with farmyard manure, most of the growth and yield parameter shows the highest value in wheat. (Mahato et al., 2018)

Pulse Crops

Chickpea (Cicer arietinum L.)

Chickpea is one of the most popular pulses in many regions of the Nepal. It is cropped in an area of 9,883ha with production of 10,914mt (MOAD, 2017). It contributes 3% of the major pulse production in Nepal. Chickpea is frequently attacked mainly by a wilt caused by Fusarium oxysporum f. sp. ciceri, stem rot by Sclerotinia sclerotiorum and damping off caused by R. solani which are worldwide in distribution. Preliminary investigations based on usefulness of Trichoderma as biocontrol agent was done by Kaur and Mukhopadhay (1992) who reported successful integration of T. harzianum with fungicides like Vitavax 200 and Ziram in inhibiting chickpea wilt. Coating chickpea seeds with biocontrol agent Bacillus subtaillis, Gliocladium virens, Trichoderma harzianum and T. viride significantly controlled Fusarium oxysporum f.sp. ciceri wilt by 30 - 45.8 per cent and integration of bio-control agent and carboxin increased the seed yield by 25.4 - 42.6 per cent (De et al., 1996).

Oilseed crops

Mustard Brassica juncea (L.)

Mustard Brassica juncea (L.) is one of the major oilseed crops cultivated in Nepal. It is cropped in an area of 169,769 ha with production of 171,499 Mt (MOAD, 2017). Several researches were focused on the eco-friendly approaches of managing these major diseases employing Trichoderma. In an in vitro study T. viride performed along with fungicides mancozeb and carbendazim and showed superior result against mycelial growth of Alternaria brassicae over control (Meena et al., 2004). Trichoderma spp. significantly increased plant height (<0.001), leaf number (0.001), root length (0.007), root fresh weight (<0.001) and root dry
weight (<0.001) compared to the untreated plants (control) in mustard. (Roslee et al., 2017).

Groundnut (Arachis hypogaea L.)

Groundnut (Arachis hypogaea L.) yield less due to the high disease incidence. It is cropped in an area of 3,269 ha with production of 3,843 Mt(MOAD, 2017). Though more than 55 pathogens have been reported to affect the crop, few diseases like early leaf spot (Phaeoisriopis archidicola), late leaf spot (Phaeoisriopis personata), rust (Puccinia archidis), collar rot (A. niger van tiegham), stem rot (S. rolfsii), root rot (M. phaseolina) and alfalfa root (Aspergillus flavus) are recognized to be economically important and have been biologically managed by deploying *Trichoderma* spp. Asghari and Mayee (1991) reported the application of *T. harzianum* and 0.2% carbendazim effectively protected groundnut from damage by *Sclerotium rolfsii*. Treatment with *T. viride* and *P. fluorescens* increased pod yield by 14-35 % and 22-33 % over control and root rot caused by *Macrophomina phaseolina* in groundnut. (Ramesh & Korikanthimath, 2006)

Sesame (Sesamum indicum)

Sesame (Sesamum indicum) is one of the most ancient oilseed crops. It is cropped in an area of 4,328 ha with production of 2,751 mt (MOAD, 2017). Tamimi and Hadvan (1985) reported that the differences in the amount of inhibition of growth of a range of *sesamum* wilt causing fungi by gaseous metabolites from *N. sitophila* and from *T. harzianum* could be accounted by differences in their ages. The highest level of growth inhibition from test fungi ever recorded was as follows: 3-day-old *N. sitophila* was 55% on virulent *R. solani*, 51% on a virulent *R. solani*, 48% on *F. oxysporum*, and 40% on *M. phaseoli*.

Cash crops

Sugarcane

Sugarcane is a major commercial crop grown in the tropical and sub-tropical regions of the country. It is cropped in an area of 639 ha with production of 4,346,754 mt (MOAD, 2017). Among the fungal diseases, red rot and smut cause severe yield loss. (Mishra, 1982) observed that the *Rhizosphere microflora* of sugarcane plants was affected by incidences of red rot. Later, Joshi and Misra (2013) reported that the secondary metabolites of *Trichoderma* isolates native to sugarcane ecosystem inhibited *Colletotrichum falcatum* causing red rot of sugarcane. Both in vitro and in vivo experiments revealed that *T. harzianum* (T20) is highly efficient, has mycoparasitic activity against *C. falcatum*, proved its endophytic nature, capable of inhibiting the mycelial growth of *C. falcatum* and reducing red rot disease in sugarcane during their interaction. (Elamathi et al., 2017)

Cotton

Cotton is another widely cultivated commercial crop of Nepal with great economic importance. It is cropped in an area of 125 ha with production of 129 Mt (MOAD, 2017).

Major diseases associated with decreased yield of cotton crop are root rot (*M. phaseolina*), wilt (*Fusarium vasinfectum*), root rot (*Rhizoctonia bataticola*), anthracnose (*C. ollcotetrium gossypium*), *Alternaria* leaf spot, bacterial blight and damping off (*Pythium ultimum*). Soil application of *Trichoderma* was observed to be significantly superior over seed treatment (Gaur et al., 2005).

Tea and coffee

Tea and coffee are the popular beverage crops cultivated in more than 50 countries. Tea is cropped in an area of 20,747 ha with production of 23,821 Mt (MOAD, 2017). Tea sub-sector contributes about 0.0105% in the national GDP and 0.0347% in the Agricultural Gross Domestic Product (AGDP) (CBS, 2014). At present, Coffee is cropped in an area of 2,618 ha with production of 532 mt (MOAD, 2017). Among the diseases, collar canker caused by *Phomopsis* theae and brown blight caused by *Glomerella cingulata*, collar rot of coffee caused by *R. solani* are significant. Phylosphere and soil mycoflora of an experimental tea plantation of Cachar was documented (Deb et al., 1999).

(Bandopadhay et al. 2008) observed that *Gliocladium* JPG1 and *Trichoderma* JPT9 isolates significantly inhibited the sclerotial growth of *M. phaseolina* at different stages.

Vegetable crops

Onion (Allium cepa)

Onion (Allium cepa) is another important vegetable crop of Nepal. Six major diseases *Alternaria alternata* causing foliar blight of onion, *Alternaria porri* causing purple blotch of onion, damping-off and basal rot by *F. o. f.sp. cepae* and *Pythium sp*, white rot by *S. rolfsii* and black mould by *A. niger* were found to be associated with the crop. Control of *A. porri* causing purple blotch of onion has been widely studied. Effective isolates of *T. harzianum* i.e. Th3, Th-30 of *T. harzianum* and *Tv*-12, *Tv*-15 of *T. viride* were reported to express high level of disease reduction and growth promotion in susceptible onion (Prakasham and Sharma, 2012).

Cauliflower and Cabbage

Cauliflower (*Brassica oleracea* L. var. *botrytis*) and cabbage (*Brassica oleracea* L. var. *capitalize*) are the most important winter vegetables of Nepal. Cauliflower is cropped in an area of 34967.0 ha with production of 550044.8 mt (MOAD, 2017). Cabbage is cropped in an area of 28071.4 ha with production of 484036.8 mt (MOAD, 2017). Major pathogens which cause crop losses are club root caused by *Plasmodesophora brassicaceae*, black rot by *Xanthomonas campestris*, wire stem by *Rhizoctonia solani*, leaf spot by *A. brassicaceae*, leaf blight by *A. brassicicola*, damping off by *R. solani*, *Pythium*, *Phytophthora*, *Corticium* and *Fusarium*. Antagonistic potential of *Trichoderma* and *Aspergillus* species was evaluated on *Sclerotinia sclerotiorum* causingrots in cabbage and...
cauliflower by (Sharma et al. 2001) and further the role of Trichoderma spp. in an IDM programme on the management was confirmed against Sclerotinia sclerotiorum (Sharma et al., 2001; Zewain et al., 2004).

Fruit crops

Guava (Psidium guajava)

Guava (Psidium guajava) is an important fruit crop of Nepal. It is cropped in an area of 3,453 ha production of 22,370 mt (MOAD, 2017). Pre-harvest diseases like canker, die back, decline etc. affect the plant growth and production, while postharvest diseases such as Phytophthora, Macrophomina and several others spoil the fruits in field, storage and in transit. Gliocladium roseum is also identified as a most potent pathogen besides F. oxysporum, psidii and F. solani. S and Dwivedi (1987) observed the Mycoflora associated with seeds from healthy and rotten fruits of guava. Later, with the advent of bio-control technology for plant disease management, several groups attempted to evaluate and use Trichoderma technology in combating diseases of fruit like guava.

Mango (Mangifera indica)

Mango (Mangifera indica) occupies a prominent place amongst fruit crops in Nepal. It is cropped in an area of 52,815 ha with production of 266,628 mt (MOAD, 2017). It suffers from great economic loss due to many pathogens e.g. F. moniliforme var. subglutinans causing mango malformation. Biocontrol was used by some groups against different pathogens and found successful by many of them. (Bhuvaneshwari and Rao, 2001) studied the in vitro interaction of T. viride with the postharvest pathogens of mango and found that the in vitro interaction of T. viride with the postharvest pathogens inhibited the growth of Pestalotia sp., A. flavus, L. theobromae, C. gloeosporioides, R. stolonifer, A. niger and M. phaseolina by 72.88, 70.74, 62.41, 56.83, 54.60, 52.77 and 51.08%, respectively.

Conclusion and Recommendations

Agriculture is the major sector of Nepalese economy. It provides employment opportunities to 66 percent of the total population and contributes about 33 percent in the GDP. So it is prime duty to promote biological method in controlling disease of plant. The success of biological control of plant diseases depend on the availability of effective formulations of biocontrol agents, their survival during storage and rapid multiplication and colonization after inoculation. Different species of Trichoderma are known to produce different kinds of enzymes which have a significant role in biocontrol activity like cell wall degradation, biotic and abiotic stress tolerance, hyphal growth, antagonistic activity against plant pathogens. By the advance techniques laid in the molecular biology, we can easily isolate, characterize, clone, sequence and express the functions of these genes and can study their functions and role in the biocontrol mechanism (Sharma et al., 2011). Strains of Trichoderma species against a wide range of challenging pathogens, their mechanism of action, survivability and rhizospheric competence with the changing climate, compatibility with the various components of integrated pest management, quality formulations and field success are the major issues which need to be further explored intensively. Injudicious and indiscriminate use of pesticides and presence of pesticide residues in food, fruits, vegetables and environment is a matter of grave-concerns, so it would be better in use of biological method in controlling disease of plant.

Author’s Contribution

Nabin Pandey & Madhusudhan Adhikhari designed the research plan; Binod Bhantana performed experimental works & collected the required data. Madhusudhan Adhikhari & Binod Bhantana analysed the data; Nabin Pandey, Madhusudhan Adhikhari & Binod Bhantana prepared the manuscript, critical revised and finalized the manuscript.

Conflict of Interest

The authors declare that there is no conflict of interest with present publication.

Acknowledgement

We want to acknowledges Hira Kaji Manandhar, PhD, ExSenior Scientist, Nepal Agricultural Research Council who guided us and providing suggestions. Sincere thanks to all the members of Department of Plant Pathology, AFU Rampur, Chitwan.

References

Ramesh R & Korikanthimath VS (2006) Management of groundnut root rot by Trichoderma viride and...
Pseudomonas fluorescens under rainfed conditions. Indian Journal of Plant Protection.

