IN SILICO VALIDATION OF MIDDLE EAST RESPIRATORY SYNDROME (MERS) VIRUS PROTEINS FOR BETTER DRUG DEVELOPMENT

D.S. Mundaganore¹, Y.D. Mundagnore² and K. V. Ashokan³

¹Department of Zoology, Willingdon College, Sangli, Maharashtra, India-416416
²Department of Zoology, Miraj Mahavidyalaya, Miraj, Sangli, Maharashtra, India-416410
³Department of Zoology, P.V.P College, Kavathe Mahankal, Sangli, Maharashtra, India-416405

Abstract

MERS-CoV virus protein sequence of N, M, E and S-protein was validated by bioinformatics servers and tools. The study revealed that S-protein shows highest percentage of amino acid and the least in M and E-protein. The bit score also shows the same trend but the E-value is maximum in E and M protein. The amino acid composition revealed that N-protein is rich in glycine and M-protein rich in leucin, Pyrolysin, Selenocysteine and cystein (N-Protein) are absent in all the protein studied an indication of low thermostability. The physico-chemical study showed that M, N, and E proteins are positively charged due to specific amino acids (Argin in and lysine) and S-protein is negatively charged due to aspartic acid and glutamic acid. EC is maximum in S-protein. Instability Index (II) shows that E and S-proteins are more stable in test tube than other proteins. Further all proteins are hydrophobic with GRAVY below ‘0’. To get clearer picture of the physical and chemical attribute of the protein we generated 3D model and the model was validated and observed that the 3D structure falls in the accepted limits. The practical implication of the study is that the result will assists the pharmacologist and other drug developers and Government bodies to get better knowledge on these proteins and develop possible new vaccine against MERS-CoV.

Key words:MERS Co-virus, M, N, E, N and S-protein, Physico chemical character, SWISS MODEL, Model validation.

Introduction

Middle East Respiratory Syndrome (MERS) (De Groot et al, 2013) is an illness caused by virus. It was first reported in Saudi Arabia on 24 September on ProMED-mail 2012. The virus is specifically known as corona virus i.e. MERS-CoV. The closest phylogenetic neighbors to MERS-CoV are putative beta coronaviruses in China (Zaki et al, 2012), in Netherlands (van Boheemen et al, 2012, and a recently discovered isolate from South Africa (Ithete et al, 2012). Confirmed cases of MERS-CoV infection developed sever acute respiratory illness. They have fever, cough, and shortness of breath and half of the reported cases are dead. All the infected cases are linked to four countries in or near the Arabian Peninsula. It spread through close contact. But, the virus has not shown to spread in a sustained way in communities. The risk factor of this virus, spreading methods and how to prevent the infection is not clear yet. CDC (Center for Disease Control and Prevention) is working to understand these factors better. The more censes related to infection and death respectively is France (2, 1), Italy (3, 0), Jordan (2, 2), Qatar (5, 2), Tunisia (3, 1), United Kingdom (UK) (3, 2), United Arab Emeritus (UAE) (6, 2) with in all (114, 54) (http://www.cdc.gov/coronavirus/mers/). Molecular analysis including gential and phylogenet studies revealed that MERS-CoV falls under C-lineage of batracovirus genus and more related to Tylonycteris beta corona virus HKU4 and HKU5 Pipistrellus beta corona virus (Zaki et al, 2012, van Boheemen et al, 2012, Woo et al, 2012). Study indicate that spike (S) protein interact with and helps to enter into the host (Raj et al, 2013, Jiang et al, 2013). The available literature indicates the molecular organization of the virus is in juvenile stage. A lot of progress is needed to reach the target specific drugs and vaccine. The various proteins like M, N, E and S is not fully studied both concerned with its structure and function. To understand the structure of protein and its molecular organization is one of the requirement for developing effective vaccine and possible drugs against the dreaded disease MERS. Her we make an attempt to characterize different protein on MERS-Coronavirus with various bioinformatics tools and servers.

Materials and methods

Extraction of protein sequences

The four protein sequences of MERS Coronavirus were extracted from NCBI (National Center for Biotechnology). It is part of the United States National Library of Medicine (NLM), a branch of the National Institutes of Health. It has

This paper can be downloaded online at www.ijasbt.org/
a series of database collection relevant to biotechnology and bioinformatics. The sequences retrieved from NCBI and its various specifications are given in Table 1.

Identification of amino acid percentage composition

The percentage composition of various amino acid and various physico-chemical properties of the retrieved sequence was done with the help of ProtParam bioinformatics server. The parameters computed by ProtParam include the molecular weight, theoretical pI, amino acid composition, atomic composition, extinction coefficient, estimated half-life, instability index, aliphatic index and grand average of hydropathicity (GRAVY). The amino acid and atomic compositions are self-explanatory. All the other parameters will be explained below.

Extinction coefficients

The extinction coefficient indicates how much light a protein absorbs at a certain wavelength. It is useful to have an estimation of this coefficient for analyzing a protein with a spectrophotometer when purifying it. It has been shown (Gill and Hippel, 1989) that it is possible to estimate the molar extinction coefficient of a protein from knowledge of its amino acid composition. From the molar extinction coefficient of tyrosine, tryptophan and cystine (cysteine does not absorb appreciably at wavelengths >260 nm, while cystine does) at a given wavelength, the extinction coefficient of the native protein in water can be computed using the following equation:

\[E(Prot) = \text{Numb}(\text{Tyr}) \times \text{Ext}(\text{Tyr}) + \text{Numb}(\text{Trp}) \times \text{Ext}(\text{Trp}) + \text{Numb}(\text{Cystine}) \times \text{Ext}(\text{Cystine}) \]

Where (for proteins in water measured at 280 nm):

\[
\begin{align*}
\text{Ext}(\text{Tyr}) & = 1490, \\
\text{Ext}(\text{Trp}) & = 5500, \\
\text{Ext}(\text{Cystine}) & = 125;
\end{align*}
\]

The absorbance (optical density) can be calculated using the following formula:

\[\text{Absorb}(Prot) = \frac{E(Prot)}{\text{Molecular weight}} \]

Instability index (II)

The instability index provides an estimate of the stability of a protein in a test tube. Statistical analysis of 12 unstable and 32 stable proteins has revealed (Guruprasad, 1990) that there are certain dipeptides, the occurrence of which is significantly different in the unstable proteins compared with those in the stable ones. The authors of this method have assigned a weight value of instability to each of the 400 different dipeptides (DIWV). Using these weight values it is possible to compute an instability index (II) which is defined as:

\[II = \frac{(10/L) \times \sum \text{DIWV}(x[i]x[i+1])}{i=1} \]

Where: L is the length of sequence

DIWV(x[i]x[i+1]) is the instability weight value for the dipeptide starting in position i.

A protein whose instability index is smaller than 40 is predicted as stable, a value above 40 predicts that the protein may be unstable.

Aliphatic index

The aliphatic index of a protein is defined as the relative volume occupied by aliphatic side chains (alanine, valine, isoleucine, and leucine). It may be regarded as a positive factor for the increase of thermostability of globular proteins. The aliphatic index of a protein is calculated according to the following formula (Ikai, 1980):

\[\text{Aliphatic index} = X(\text{Ala}) + a \times X(\text{Val}) + b \times (X(\text{Ile}) + X(\text{Leu})) \]

Where X(Ala), X(Val), X(Ile), and X(Leu) are mole percent (100 X mole fraction) of alanine, valine, isoleucine, and leucine.

The coefficients a and b are the relative volume of valine side chain (a = 2.9) and of Leu/Ile side chains (b = 3.9) to the side chain of alanine.
3D Model generation

The 3D Model of the protein was generated by using SWISSMODEL package. SWISS-MODEL is a fully automated protein structure homology-modeling server, accessible via the ExPASy web server, or from the program DeepView (Swiss Pdb-Viewer). The purpose of this server is to make Protein Modeling accessible to all biochemists and molecular biologists worldwide (Arnold et al., 2006; Kiefer et al., 2009; Peitsch, 1995). The three models was created with the help of YASARA software by using the pdb template generated from SWISSMODEL.

Validation of 3D model

The 3D model was predicted by various parameters given by SWISS model server as sequence identity percentage, E-value and QMEAN Z Square.
GRAVY (Grand Average of Hydropathy)

The GRAVY value for a peptide or protein is calculated as the sum of hydropathy values (Kyte and Doolittle, 1982) of all the amino acids, divided by the number of residues in the sequence.

Prediction of phosphorylation sites

Phosphorylation sites were predicted by using NetPhos. The NetPhos 2.0 server produces neural network predictions for serine, threonine and tyrosine phosphorylation sites in eukaryotic proteins (Blom et al, 1999).

Transmembrane sequence analysis

Transmembrane domains were predicted by using SOSUI server (Hirokawa et al, 1998; Mitaku et al, 1999; Mitaku et al, 2002). SOSUI which distinguishes between membrane and soluble proteins from amino acid sequences, and predicts the transmembrane helices for the former.

Prediction of hydrophobic residues

The hydrophobic residues were predicted by using PepWheel program. PepWheel draws a helical wheel diagram for a protein sequence. This displays the sequence in a helical representation as if looking down the axis of the helix. It is useful for highlighting amphipathicity and other properties of residues around a helix. By default, aliphatic residues are marked with squares, hydrophilic residues are marked with diamonds, and positively charged residues with octagons, although this can be changed (Ramchandran et al, 1966).

Peroxysomal targeting signal prediction

The peroxysomal targeting signals were predicted by using PTS1 predictor. PTS1 is the most abundant target signal, and is located in the C-terminal. The PTS1 is highly conserved in evolution, with the following tripeptide consensus S/A-K/R-L/M. Moreover, beyond this tripeptide motif, the PTS1 motif has been recently enlarged up to 12 C-terminal residues (Nieberger et al, 2003) comprising: the tripeptide, 5 residues upstream the tripeptide and 5 residues with polar properties, more upstream.

Results

The sequence retrieved from NCBI (Table 1) shows that S-protein contain highest percentage of amino acid (1353 AA), the least in M-protein and E-protein (219 AA) and N-protein have 413AA. The score in bits also shows the protein contain highest percentage of amino acid (1 353 The sequence retrieved from NCBI (Table 1) shows that S-protein contain highest percentage of amino acid (1353 AA), the least in M-protein and E-protein (219 AA) and N-protein have 413AA. The score in bits also shows the protein contain highest percentage of amino acid (1 353 The sequence retrieved from NCBI (Table 1) shows that S-protein contain highest percentage of amino acid (1353 AA), the least in M-protein and E-protein (219 AA) and N-protein have 413AA. The score in bits also shows the protein contain highest percentage of amino acid (1 353

The amino acid composition and various physical and chemical properties (Table 2) shows that N-protein is rich in glycine amino acid (9.2%) and least cystine, pyrrolysine and Selenocysteine, in the case of M-protein the richest one is leucine (9.6%) and the least one is pyrrolysine and Selenocysteine, E-protein also shown the same trend as M-protein but have more leucine (13.4%), but S-protein showed serine as the most abundant (9.9%) one and the least one is same as M-protein and E-protein. The least or zero occurrence of pyrrolysine and Selenocysteine in MERS Covirus indicating that it is thermo liable as these amino acids are more predominant in archae Methanosarcina Barkeri (Srinivasan et al, 2005; Bing Hao et al, 2002). The lack of cysteine in N-protein also indicates the low stability of the protein due to lack of disulphide bonds. Leucine is most abundant in M-protein. It is observed that in HIV Nef protein containing leucine motif down-regulated CD4 from the cell surface and enhanced viral replication, the same mode of action may be involved in MERS Co Virus replication; hence it is more in M-protein. The abundant amino acid in s-protein is serine; it may be due to the fact that the virus multiplication by lytic cycle is predominant as in Epstein Barr virus (Amy et al, 1999).

The phisico-chemical properties showed that proteins M, N and E are positively charged and S protein is negatively charged one, this correlates the abundance of corresponding amino acids (Table 3). EC is observed maximum in S-protein and least in E-protein, M and N-protein shows more or less equal EC. Instability index shows that E-protein and S-proteins are more stable in test-tube as its II is less than 40 (Table 3) but M and N-protein less stable as its II is more than 40 (Guruprasad et al, 1990).The aliphatic index of a protein is a measure of the relative volume occupied by aliphatic side chain of the amino acids: alanine, valine, leucine and isoleucine. An increase in the aliphatic index increases the thermostability of globular proteins. The present study shows that M and E protein have more Al and hence more heat stable and N and S protein have low AI and hence less stable (Table 3). Grand average hydrophobicity shows that all proteins are hydrophobic with GRAVY below ‘0’ (Table 3). To make a clear picture about the protein of MERS Co-virus we genarted 3D model by using SWISSMODEL (Fig. 1&2), it revealed that the N-protein has mass of 17168.094g/mol and S-protein has mass of 49937.865g/mol (Table4). The E-value and sequence identity is in agreement with good 3D model (Table 4). Comparison with non-redundant set of PDB structure is also in agreement with good model (Fig.3&4). The transmembrane sequence predicted by SOSUI (Table5 & Fig9n10) shows that hydrophobic residues are predominant than polar and charged residues.
Fig 1: Predicted 3D Model (A): N-Protein (1ssk); (B): S-Protein (413nB)

Comparison with non-redundant set of PDB structures

Fig. 3: Estimated absolute Model quality of 1ssk template

Comparison with non-redundant set of PDB structures

Fig. 4: Estimated absolute Model quality of 413nB template

Fig. 5: Predicted Phosphorylation site in N-Protein of MER

Fig. 6: Predicted Phosphorylation sites of M-Protein of MERS

Fig. 7: Predicted Phosphorylation sites in E-Protein of MERS
The phosphorylation site prediction is shown (Fig. 5-8). Phosphorylation site indicate the reaction pattern of the molecule during host interaction of the virus. Transmembrane predictions indicate that E protein and S-protein are primary in nature.

References

