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Abstract  

The dramatic rise in warm temperatures in the Himalayan region has caused the formation and expansion of 

numerous supraglacial lakes, some of which pose a serious flood hazard for the downstream communities. In 

this study, we have investigated the risk of flood hazards associated with supraglacial lakes in the Hindu Kush, 

Karakoram and Himalayan ranges of Pakistan using Landsat 8  OLI (Operational Land Imager) data of 2013 

and field observations. Among the total of 438 supraglacial lakes, the majority were identified in the 

Karakoram (378) followed by the Hindu Kush range (39). The concentration of lakes was high within 3500-

4000 m elevation (168) followed by 4000-4500 m elevation range (116). The lakes had shown more than a 

two-fold increase during the 2001-2013 period in the three mountain ranges. The increase in lake number was 

pronounced over valley glaciers likely due to increasing hydro-glacial activity under changing climate. Two 

types of supraglacial lakes were identified based on geographic characteristics, for example those rolling over 

glaciers surface away from the margins (called rolling supraglacial lakes ‘RSLs’) and the lakes found near the 

margins of glaciers mostly stationary in nature (called static supraglacial lakes ‘SSLs’). Most of the glacial 

lakes outburst flood (GLOF) events have been observed from SSLs in this region. However, the 

hydrodynamic process exaggerating the risk of GLOF from supraglacial and englacial lakes needs in-depth 

research for effective disaster risk reduction in this region in future.  
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Introduction  

The rapid retreat of glaciers, increasing number of melt-water lakes and the resulting catastrophic floods are 

the true indicators of climate change in the Himalayan cryosphere of South Asia. Monitoring of glacial lakes 

is gaining importance in context of growing risks of glacial lakes outburst flood (GLOF) as a key climate 

change hazard in the Himalayan region. Assessment of such flood hazards and knowledge of environmental 

processes are key factors in flood risk management in the downstream (Kamble et al., 2013; Shrestha, 2019). 

Glacier retreat observed in most of the Hindu Kush and Himalaya regions (Bolch et al., 2012), has resulted in 

formation numerous glacial lakes including supraglacial ones. The frequency of GLOF events has been 

increased in the Hindu Kush-Himalayan region since the second half of the 20th century due to the combined 

effects of climate change and deforestation (Iturrizaga et al., 2005; Sakai and Fujita, 2010; Khan, 2014). Many 

such events have been reported from supraglacial and englacial lakes outbursting in the Hindu Kush-

Karakoram-Himalaya (HKH) region of Pakistan (Table 1), which had resulted in loss of the valuable lives, 

property and infrastructure in the downstream (DRM, 2013; Ashraf et al., 2014; ICIMOD, 2015; Ashraf et 

al., 2017). According to Inter Press Service (2015), Pakistan has experienced seven GLOFs over the past 17 

months alone that not only wiped out standing crops and irrigation networks but also displaced local 

communities. This situation could be worsened as temperature rise and extreme weather conditions are 

predicted in the coming decades in the HKH cryosphere of Pakistan, prompting an urgent need for greater 

preparedness at all levels of society.  

Remote sensing (RS) techniques have been successfully applied to study the behavior of supraglacial lakes in 

various regions of the world (Reynolds, 2000; Richardson and Reynolds, 2000; Benn et al., 2001; Wessels et 

al., 2002; Sundal et al., 2009; Sakai and Fujita, 2010; Wang et al., 2011). Small supraglacial lakes in a majority 

of cases are not hazardous, but they may generate surprisingly large floods that represent hazards at local scales 

(Richardson, 2010). The situation demands better risk assessment of GLOF hazards as the local communities 

are now more vulnerable to the increase in frequency of those hazards due to the unprecedented rise in global 

warming in this region. 

This paper is aimed to analyze the formation of supraglacial lakes and the risk of outburst flood hazard in the 

HKH region of Pakistan (Figure 1) using Landsat ETM+/OLI image data of 2001-2013 period coupled with 

ground information. The region stretches over an area of about 121,724 km2 of which 32.3% area is 

contributed by the Hindu Kush, 40.1% by the Karakoram and 27.6% by the Himalaya range. It forms a part 

of the Upper Indus Basin (UIB) containing 10 sub-basins, the distribution of which is shown in Figure 1. 

Climate in this cryospheric region is mostly semi-dry to dry with annual rainfall ranging between 200 and 500 
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mm in the valleys (Khan, 2014). Monsoon rainfalls are higher during July-September period, especially in the 

southern basins, while the westerly fronts originating from the Mediterranean region during winter and spring 

seasons dominate most of the upper region.  

Table 1. Flood events occurred from Supraglacial/englacial lakes out-bursting in various parts of the 

HKH region.  

Period Description Source 

April 2007 
High water discharge from Ghulkin glacier, upper Hunza 

valley  
Ashraf et al. 2014 

April 2008 
Flooding from Ghulkin glacier resulted in loss of the 

property and infrastructure 
Ashraf et al. 2014 

June 2008 
Sudden discharge from Ghulkin glacier resulted in loss of 

the property and infrastructure 
Ashraf et al. 2014 

March 2009 Sudden discharge from Ghulkin glacier  ICIMOD, 2015 

July 2010 
High water discharge from Ghulkin glacier resulted in loss 

of the property and infrastructure 
ICIMOD, 2015 

2010 

 Una Glacial burst caused damages to natural forest and 

the settlements of Sat, Dart, Ghosonar, Chira and Bulchi 

villages in Bagrot valley.  

 Lake outburst over Hinarchi glacier caused heavy 

damage to natural forest and agricultural land of villages 

Khama, Bulchi and Chira. Damages occurred to natural 

forest as well as settlements of Taisote and Massingot 

villages due to Dubani Glacier/lakes burst in Bagrot 

valley. 

DRM, 2013 

December 

2011 
Flood water destroyed the fields in Ghulkin ICIMOD, 2015 

July 2012 Extensive discharge from Yaz-Sam lake ICIMOD, 2015 

June 2013 High water discharge resulted in loss of the nearby property ICIMOD, 2015 

July 31, 2013 
Flood in Reshun valley severely affected infrastructure, 

property and livelihoods in Chitral 
Ebrahim, 2013 

August 2013 
Extensive water discharge resulted in loss of the 

property/infrastructure 
ICIMOD, 2015 

April 2014 
High water discharge triggering flash flood in the Bagrot 

valley 

Shaikh & Tunio, 

2015 

July 2015 
Extensive water discharge creating flood condition in Bagrot 

valley 

Shaikh & Tunio, 

2015 
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Figure 1. Location of HKH ranges and 10 river basins in the Upper Indus Basin of Pakistan 

 

Materials and methods 

Remote sensing (RS) data of Landsat 8 OLI (Operational Land Imager) of the 2013 period was downloaded 

from the web link (http://glovis.usgs.gov) for mapping and analyses of supra-glacial lakes within 10 river 

basins of the three HKH ranges. Landsat 7 ETM+ (Enhanced Thematic mapper plus) images of 2001 and 

2009 were downloaded for temporal analysis of supraglacial lakes in Hunza river basin. Remote sensing 

application in GLOF risk assessment usually involves detection and mapping of glaciers and glacial lakes, 

studying impoundments and their surroundings (Richardson, 2010). The RS analysis was supplemented by 

available topographic maps of 1:50,000 and 1:250,000 scales published by Survey of Pakistan. Digital 

elevation model (DEM) data of Shuttle Radar Topography Mission (SRTM) 90 m was downloaded from 

www.jpl.nasa.gov/ in order to study the vertical distribution of lakes in the study area, 

Supraglacial lakes were detected and mapped on cloud- and snow-free images through visual interpretation 

and analysis. The lakes’ boundaries were delineated basin-wise through on-screen digitization of the image 

data. In order to minimize the uncertainty in the boundary demarcation, the threshold value of 0.1 ha was 

considered for delineating lakes to eliminate numerous small supraglacial ponds scattered over the glacier 

surface. Glacial lakes were first tried to identify using Normalized Difference Water Index (NDWI), but the 

automated technique was not considered appropriate for detection of supraglacial water bodies over debris-

covered glaciers from many other glacier facies like silty/dusty ice, debris-covered ice or steep crevasses for 

mapping and analysis (Rivera et al., 2007). This indexing method is mostly used for delineation of flood extent 

http://glovis.usgs.gov/
http://www.jpl.nasa.gov/
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in an area or distinguishing open water bodies from the soil in plain areas (Huggel et al., 2002). Lakes attribute 

data like location coordinates, area, length, and elevation were determined in each river basin using analytical 

functions of Geographic information system (GIS). The location of lakes was marked clock-wise in each 

basin and stored in geographic coordinates (longitude, latitude) with a unique identifier number in point data 

file. The length of lakes was measured along the direction of flow of their mother glacier. The lake elevation 

was determined through overlaying point data over DEM and using extract values function of the ArcGIS 

software.  

The decision criteria adopted to define potential hazards of glacier lakes includes lake area; the rate of lake 

growth; characteristics of mother glacier and surrounding geometry. Temporal analysis of the lakes was 

performed to assess the rate of change using image processing and GIS techniques. The relationship of 

supraglacial lakes was studied with the glacier area of 2013 period (GIP, 2017). The strength and confidence 

level of the linear relationship between the two variables were studied using the coefficient of determination 

'R2' and Pearson coefficient 'p'.   

 

Results and discussion 

A total of 438 supraglacial lakes were identified in the HKH region of Pakistan during the 2013 period, among 

which 378 were found in the Karakoram, 39 in the Hindu Kush and 21 in the Himalaya range (FTR, 2015). 

The situation indicates the presence of less extensive snow and ice coverage in the Hindu Kush and the 

Himalayas ranges as compared to the Karakoram range. The low dense coverage and further depletion of 

glacial ice mass in the Hindu Kush and Himalayas may be attributed to warming conditions in these regions 

(Azam et al., 2018; Ashraf and Batool, 2019; Wester et al., 2019). The rise in temperature may also influence 

the precipitation pattern from snowfall to rain (Bajracharyra, et al., 2014), which affects the glacier 

accumulation amount resulting in loss of ice mass in the Himalayas. About 93% of lakes (407) fall in the areal 

category of <2 ha, 5.5% (24) in the 2–5 ha and 0.9% (4) in the 5–10 ha category. The lakes of >10 ha category 

(3) were identified mainly in the Karakoram range (Figure 2). Small size lakes (<2 ha) were found 350 in the 

Karakoram range, 36 in the Hindu Kush and 21 in the Himalaya range (Figure 3). The elevation has also 

influenced the development of lakes. The lakes were highest in number below 4000 m elevation, whereas 

they were found least above 4500 m elevation (Figure 4), likely due to cooler temperatures and presence of 

general accumulation condition of the glaciers at higher altitudes. In most cases, the glacier ice mass residing 

above 4500 m elevation, like in the Karakoram range, is in steady condition. The lakes were identified 

maximum within 3500-4000 m elevation in Hunza (90), Shigar (29), Astore (6), Jhelum (4) and Chitral (12) 

river basins. In Gilgit basin, the lakes were found within 3000-3500 m (7), while in Swat, they were maximum 
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within 4000-4500 m range (4). The vertical distribution of supraglacial lakes over glacial ice mass 

differentiates, in general, the accumulation and ablation zones of the glacier, i.e. ablation zone with the 

presence of extensive lakes/ponds and the accumulation lacking those. But in case of ablation zone over steep 

slope, as in the Karakoram, where the glaciers have some of the steepest gradients in the world (e.g. avalanche 

fed Minapin glacier beneath the Rakaposhi peak (7788 m) descends from about 5300 m to 2400 m elevation 

over a distance of only 10 km (29% slope)), the lake numbers are not pronounced. The parts of glaciers over 

steeper slopes are usually highly active and contain dense crevasses where supraglacial melt found no resident 

time and seeps down readily to join englacial channel flows.  

 
Figure 2. Distribution of various area classes of supraglacial lakes and critical lakes in the HKH 

region 
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Figure 3. Comparison of various area classes of supraglacial lakes in the HKH ranges 

 

 

 
Figure 4. Comparison of glacial lakes at various elevation classes in the HKH ranges 

In comparison to the lake inventory of 2001 (Ashraf et al., 2012), the supraglacial lakes have shown an 

increase in all the HKH ranges, i.e., from 197 in 2001 to 438 in 2013. The increase in lake number appears to 

be higher in Hunza, Shyok and Shigar river basins of the Karakoram and Chitral river basin of the Hindu 

Kush range. Most of the medium and large-sized valley glaciers lie in these basins. In the Hindu Kush, a high 

concentration of valley glaciers exists in the Chitral basin, therefore supraglacial lakes are also extensive in 

number in this basin. The lake number and glacier area of 2013 period exhibited a close positive relationship 
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(R2=0.77) significant at p<0.05. Similarly, the lake number indicated a fair positive correlation with valley 

glaciers (R2=0.62). The bulk of ice mass in different river basins is contributed by the large sized valley glaciers 

like Batura, Biafo, Hispar, Baltoro, and others in different HKH basins. The lakes are mostly found at 

elevations where glacier ice mass is present in abundance. Glimpses of some of the supraglacial lakes formed 

over various valley type glaciers are shown in Figure 5. The lake formed over Ghulkin glacier in the Hunza 

basin has breached several times in the past causing heavy water discharge mixed with debris. The large-sized 

supraglacial lakes are developed through temporary or permanent blockage of subsurface water conduits that 

move with glaciers as long as they find some escape point. The number of supraglacial lakes was higher (>60) 

in three glaciated basins of the Karakoram, i.e. Hunza, Shigar and Shyok. Numerous small ponds and lakes 

formed over Baltoro glacier in Shigar basin provide a clue of growing warm conditions in lower valleys of 

the basin (Figure 5).  

 
Figure 5. Glimpses of supraglacial lakes formed in different HKH basins (2013) 

Generally two types of supraglacial lakes were observed based on their mobility characteristics on glaciers in 

this region, i.e. those rolling over glacier surface away from the glacial margins (called rolling supraglacial 

lakes –RSLs) and the lakes exist near the margins of glacier – mostly stationary in nature (called static 

supraglacial lakes–SSLs). The RSLs have the property of splitting and merging with neighboring lakes during 

the movement of glaciers. In the basins like Hunza, Shigar and Shyok, where large valley glaciers descend in 

the temperate zone, results in exaggerating the ice melting process over glaciers that favors 

formation/expansion of supraglacial ponds/lakes. The rate of glacier drift can be measured through assessing 

the movement of RSLs usually through analysis of time-series image data (Figure 6). An increase in lake 
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number from 126 to 225 (aggregate lake area from 238 ha to 283 ha) was observed on Hispar glacier in the 

Hunza basin during 2001-2013 period (Table 2). As all lakes were not sustained such a long time, so from the 

movement of selected RSLs that remained during 2001-2009 period, adrift in the surface of Hispar glacier 

was estimated at the rate of about 18 m y-1.  

 
Figure 6. Temporal variation in supraglacial lakes rolling over Hispar glacier in the Hunza basin 

during 2001-2013 period  

SSLs have the property of filling and breaching owing to blockage of internal conduits of a glacier, i.e. they 

fill rapidly due to the conduit blockage, sustain for days until the blocking material breached. The recharge to 

these lakes is mainly from snow and ice melt, the downpour of liquid precipitation and flows from 

surface/subsurface channels. Most of the outburst flood events have been reported from SSLs in this 

cryospheric region (e.g. DRM, 2013; ICIMOD, 2015; Ashraf et al., 2017). Glimpses of few SSLs that have 

caused frequent flooding events in the recent past are shown in Figure 7. Both types of the lake can be 

differentiated from the visual interpretation and temporal analysis of the image data.  
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Table 2. Temporal variations in Supraglacial lakes (number and area) over Hispar 

glacier in the Hunza basin (2001-2013).   

Year Lakes identified 
Surface Area (ha) 

Range Total 

2001 126 0.72–11.79 238.16 

2009 150 0.68–15.42 253.91 

2013 225 0.68–21.02 282.73 

There were 4 supraglacial lakes identified as potentially dangerous in the 2013 lake inventory, which lies 

mainly in Chitral, Gilgit and Hunza river basins (Table 3 and few are shown in Figure 5). The reasons for 

characterizing those lakes critical were rapid growth in lake area (detected from temporal image analysis) and 

history of periodic filling and breaching in the past. Two of those critical lakes fall in the Central Karakoram 

National Park (CKNP) (Senese et al. 2018). The supraglacial lakes identified in the Hunza and Gilgit basins 

had caused frequent flooding events in the recent past. An ephemeral lake Hunz-gl 14 (locally ‘Yaz-Sam’) 

over Ghulkin glacier in the Upper Hunza valley (Figure 7a) had caused frequent flooding events during 2008, 

2010, 2013 and 2015 owing to its geographic position near the highly crevassed part of the glacier (Ashraf et 

al., 2014, 2017). Those events have resulted in heavy damage to the property and infrastructure in nearby 

Ghulkin and Hussaini villages. The empty lake measured on August 16, 2008 (nearly two months after its 
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breach) was 221 m in length, 12 m in width and 7 m in depth (Ashraf et al., 2011). The lakes caused GLOFs 

owing to factors like rapid increment in lake water because of snow/ice melting, overflown of subglacial 

channels and heavy rainfall/surface runoff. This is evident from the fact that most of the events occurred during 

April to August months – the snow melting and ablation periods representing spring and summer seasons 

pointing towards high supraglacial lake activity under warm conditions.  

Table 3. Supraglacial lakes identified as potential GLOF lakes in the HKH region of Pakistan 

S.No. 
Lake  

Number 

Area 

(ha) 

Length 

(m) 

Elevation 

(m) 
Remarks 

1 Chi-gl 108 4.94 308 3669 Growing over glacier terminus 

2 Gil-gl 656 0.29 143 2867 History of fill and breach 

3 Gil-gl 658 1.95 205 3297 Growing over glacier terminus 

4 Hunz-gl 14 1.39 226 2876 History of fill and breach 

Where Chi-gl =Chitral glacial lake, Gil=Gilgit, Hunz=Hunza 

Similarly, an ephemeral lake Gil-gl 656 (locally named ‘Barberi’) developed over Hinarchi glacier (Figure 

7b) possesses a history of outburst flooding damaging the valuable forest, agricultural land and the property 

of nearby Sat village in Bagrot valley of Gilgit basin. The profile of this lake was measured using ground-

penetrating radar (GPR 250 MHz shielded antenna) by a team of CEG department of Peshawar University in 

2012. According to their findings, the lake about 25 m in length contained fresh debris underlain by old 

debris/moraines in the bottom ranging in depth from 2.3 m to >15 m. Both the lakes, i.e. Hunz-gl 14 and Gil-

gl 656 lie at more or less similar altitudes in the temperate zone below 3000 m elevation (Table 3). Similarly, 

a supraglacial lake Gil-gl 658 growing at the rate of about 0.27 ha y-1 since 2006 at elevation of about 3297 m 

over Gargo glacier in Bagrot valley (Figures 7c&d) breached suddenly in September 2014. According to a 

team of PMD visiting the lake site next month of that event, the local people had heard a roaring sound during 

the time of the draining process of the lake. It is assumed that a subglacial activity like a sudden breach of a 

choking conduit had provided an outlet to lake water to escape swiftly. Structural glaciology (e.g. crevasses, 

cavities) is responsible for some supraglacial derived debris reaching the subglacial system (Benn et al., 2012). 

The debris and the detached ice mass usually blocks the englacial conduits forming englacial lakes incases. 

Because of high sliding velocities, isothermal ice produces large volumes of meltwater, which flows out from 

englacial channels of glacier (Figure 8). The breaching of the englacial lake under the immense pressure of 

ice-melt water releases energy and causes the lowering down of the stored water from the linked supraglacial 

pond/lake. The activity may be sudden or takes weeks sometimes months based on the structural glaciology 

and characteristics of the blocking material in the englacial conduits.  
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Figure 8. Glacio-hydrodynamic processes causing filling and breaching of supraglacial lakes in the 

region   

The monitoring of supraglacial lakes is usually conducted by local communities and NGOs through 

assessment of the current situation and new features development over glacier; transit walks; visual 

observations, Measurements using apparatus and marking of iron pegs to monitor the movement. The critical 

supraglacial lakes formed over Ghulkin glacier, e.g. Roud, Ghoze, Borith, and Yaz-Sam are being monitored 

since 2006 in the upper Hunza valley (ICIMOD, 2015). In cases, it is difficult to segregate flooding from 

supraglacial and englacial lakes, as breaching of both these lakes is often related to direct outbursting of 

glaciers. Some of the examples are glacial outburst flooding in Reshun valley on July 31, 2013; in Boni during 

2011; in Bindo Gol during 2010; in Sonoghor valley during 2007; on Rakaposhi glacier during 2007 and in 

Yarkhon Lasht during 2003. Due to remoteness of the source glaciers, these floods are assumed to occur from 

the collapse of supraglacial/englacial lakes because of a sudden influx of water from other sources in the 

drainage conduits or sudden earthquake/seismic activity. According to the locals, disasters cannot be stopped 

fully but their risks can be minimized. Therefore, long term planning and coordinated efforts are essential to 

reduce disaster risks and vulnerabilities in this region.  

 

Conclusions 

In the present study, we have investigated the risk of flood hazards associated with supraglacial lakes in the 

three HKH ranges of Pakistan using remote sensing technique coupled with field observations. The frequent 

GLOF events occurred over the last two decades in this cryospheric region have impacted the livelihood of 

numerous local communities in the downstream. Those events are mostly associated with 

supraglacial/englacial lakes outbursting under rapid changes in the climate and glacier environment of the 

region. The supraglacial lakes had shown more than two-fold increase during 2001-2013 period in the HKH 
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ranges. The increase in concentration of the lakes in has exaggerated the risk of outburst flooding hazard in 

the downstream as evident from increase in occurrence of GLOF events in the recent decades in this region. 

The exact source of flooding and differentiation between supraglacial and englacial lakes outburst flooding 

are sometimes difficult to assess due to remoteness of the event source in various parts of the HKH region. 

Generally, such flood events have been assumed to occur from glacial out-bursting caused by growing warm 

conditions. Two types of supraglacial lakes were observed based on the location characteristics, i.e. those 

rolling over glacier surface (called rolling supraglacial lakes ‘RSLs’), mostly found away from the glacial 

margins, and the others found close to margins of glaciers mostly stationary in nature (called static supraglacial 

lakes ‘SSLs’). The latter lakes were found hazardous as most of the GLOF events have been observed from 

those lakes in various HKH basins. Integrated risk management efforts based on effective awareness, 

preparedness and early warning measures are needed on a sustainable basis to cope with negative impacts of 

such climate-induced hazards in this region in future. It is often difficult to detect such sub-glacial 

developments in conduits and formation of englacial lakes using remote sensing techniques. Such phenomena 

can be better understood if investigated by adopting isotope methods in glacial hydrology. The role of 

temperature and precipitation in supraglacial formation is complex and difficult to describe because of limited 

high altitude data availability in the glacial watersheds.  
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