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Abstract 

Satellite measurements are important for quantifying the ground observations and atmosphere columnar 

properties like Aerosol Optical Depth (AOD) especially in developing countries like India. In this study 

Moderate Resolution Imaging Spectroradiometer (MODIS) retrieval’s AOD product has been used having 3 

km and 10 km spatial resolution from terra and aqua satellites, The MODIS AOD data and meteorological 

parameters from May 2017 to May 2019 were used. The Multiple linear regression method is implemented 

in this study. The study concluded that there is a good agreement in the prediction of PM2.5 at Zoopark location, 

whereas in other monitoring locations the agreement between AOD and measured PM2.5 is relatively poor. 

The particulate matter (PM) concentrations are influenced by the local source regions and the long-range 

transport of pollutant through the wind, whereas the source regions identified based on the Potential Source 

Contribution Function (PSCF), Concentration-Weighted Trajectory (CWT) and Cluster analysis indicate the 

dominant source regions. Results indicate that the Central India and East Indian regions are more dominating 

source regions at Hyderabad location in the winter season. It was found that the lower altitude layer showed 

the major source of local regions nearby receptor. The cluster analysis indicates that the high intensity from 

the East Indian regions. This paper not only demonstrates reasonable prediction accuracy but also provides 

the model uncertainties which lays foundation for further study.  
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1. Introduction 

The PM particles study is important because of its relevance on environment and public health 

(Harrison and Yin, 2000). Exposure to PM causes major diseases such as cardiopulmonary diseases 

(Newman et al., 2020), preterm birth (8%) and low birth weight (28%) (Bachwenkizi et al., 2022), 

carcinogenicity (Abba et al., 2012), lung cancer (Raaschou-Nielsen et al., 2016). The majority of these deaths 

are from ambient particulate matter pollution (Pandey et al., 2021). However, the urbanization and population 

growth was one of the parameter for the increments in PM levels (Sharma and Maloo, 2005). The number of 

continuous monitoring stations are limited in India and the spatial distribution also matters in the urban air 

quality monitoring studies. Hence, monitoring PM2.5 across urban and rural regions of India is challenging. 

The city-scale monitoring stations are crucial for the categorization of city pollution and the ability to 

accurately assess the health impact. However, the daily PM data is mandatory for the health impact study. The 

missing PM data can be predicted using satellite AOD and meteorological data. The daily PM2.5 maps are 

useful to identify pollution “hotspots” and estimate short- and long-term exposure. 

The satellite AOD retrievals and PM prediction are well discussed in literature (Ferrero et al., 2019; 

Pant et al., 2016). AOD represents the columnar property of aerosol and the PM represent the surface loading 

of the aerosol. The relation between AOD and PM is studied by researchers using different types of models 

(Lee et al., 2011; Yap and Hashim, 2013; You et al., 2015; Park et al., 2020; Yang et al., 2019). Soni et al. 

(2018) reported that log-linear regression models are better performing in Jaipur region. In the current study 

multiple linear regression model was adopted. Furthermore, studies also considered relative humidity (RH) 

(Ma et al., 2019), Temperature (T) and Boundary layer height (Chu et al., 2015; Liu et al., 2005), Visibility 

(Ying et al., 2004), and reduction in solar radiation (SR) (Kumar et al., 2019) for assessing the influence of 

PM concentration on meteorology. Koelemeijer et al. (2006) considered the height of planetary boundary 

layer (HPBL) and relative humidity in prediction of PM2.5. Later, Tian and Chen, (2010) concluded that the 

temperature and RH were more important than HPBL for prediction of PM. The current study did not 

consider HPBL. Studies reported use of different AOD satellites to predict the PM at ground level with high 

resolution (10x10,1ox1o) (Kharol et al., 2011; Tuna Tuygun et al., 2021).Very few studies are available on 

MODIS aqua and terra AOD prediction of PM2.5 at fine resolution. In this study, fine resolution (3x3km) 

AOD and meteorological parameters are considered for prediction of PM2.5. The PM2.5 concentrations have 

great influence on source nature and strength, as well as the meteorological parameters in the study region. 

However, the receptor models are used to indicate relation between source and receptor. Most of the 

researchers used the Chemical mass balance (CMB), Positive matrix factorization model (PMF) and Principal 

Component Analysis (PCA) analysis (Jain et al., 2021; Kalaiarasan et al., 2018) for PM prediction. The 

ensemble trajectory techniques produce qualitative analysis of predominant transportation paths. 
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Wind speed and direction are the predominant parameters in transportation of aerosols (Das et al., 

2021). Sun et al. (2001) studied transport of aerosol dust from far away regions through the elevated layers 

(<3000m) towards the receptor regions. Biomass burning significantly affected the aerosol optical properties 

locally as well in the downwind regions (Shaik et al., 2019). The overall aerosol properties change based on 

their production mechanisms, removal and transport processes (Ramachandran et al., 2012). Receptor models 

are very popular while trajectory based models are not that popular in India (Banerjee et al., 2015). The long-

range trajectory transport of pollutants indicated the influence of anthropogenic pollution (Ramachandran, 

2005). The Trajectory based study by Shaik et al. (2019) revealed that the transport pathways at receptor 

location. 

The ground level PM2.5 was measured at fixed locations but its representation of spatial coverage was 

limited. Spatial interpolation methods like kriging (Ma et al., 2014) and nearest-neighbor (Just et al., 2015) are 

used. However, the spatial interpolation leads to uncertainties due to limited ground monitoring stations and 

uneven distribution of stations in urban regions. To address these challenges, establishing correlation with the 

satellite MODIS AOD product and PM2.5 was attempted in study region. Receptor models demonstrate strong 

interaction with in the source and receptor (Pant and Harrison, 2012). To establish the relationship with the 

source and receptor location, the back trajectory model was adopted in this study, as no such studies are 

reported for this region with complex land uses like industrial, residential, commercial and high-rise buildings. 

It was necessary to understand the variations in PM2.5 concentrations and source identification. For 

identification of ground level PM2.5, MODIS instrument Terra/Aqua AOD and meteorological parameters 

are used in the present study. MLR and back trajectory analysis are also attempted to find potential source 

regions contributing PM2.5 by long range transport. The study will be a utility tool to predict air quality 

economically using the MODIS AOD when air quality monitoring is difficult in large regions. 

 

2. Methodology 

2.1 Study area 

Hyderabad City located in South India (17°12’ to 17°6’ N and 78°66’ to 78°70’E; 540 MSL), with 

population over 8 million is the state capital of Telangana. The total area city covered nearly 650 km2, the 

average annual rainfall of the city is 840 mm during 1991–2013 (Agilan and Umamahesh, 2015). The Central 

Pollution Control Board (CPCB) monitoring points are shown in Fig. 1. The study region is dominate by 

transportation, industrial, commercial and residential land uses with mixed land uses as well. Seasonal climate 

prevails in the study area with hot summer (March-June), cold winters (November to February) and rains 

during monsoon season (July to October) (Kumar et al., 2017). The Hyderabad PM2.5 annual average is 56μg 

m-3peaking during the winter morning rush hours (140μg m-3) (Chen et al., 2020). The MODIS level 3 dataset 
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AOD range from 0.15 up to 0.5 and observed relatively good correlation with AOD (0.6-0.7) (Kharol et al., 

2011). Gummeneni et al., (2011), identified dominating pollution activities: vehicular (31%) and resuspended 

dust (26%). The study by Guttikunda and Aggarwal, (2009) reveled traffic sources dominating 50% of the 

total pollution. The long range pollutant from Thar Desert was reported by Badarinath et al. (2007). The 

contributions of local and long-range pollutants are dominating the study region. 

 

Fig. 1. Study location Hyderabad (six locations) 

2.2. Data collection 

2.2.1. MODIS instrument AOD: The satellite AOD dataset provided by the Moderate Resolution Imaging 

Spectroradiometer (MODIS) on the Terra/Aqua instrument (Remer et al., 2005) was used in the present study. 

The MODIS instrument produces global coverage in 1 or 2 days. In this study, AOD data from Terra 

(MOD04_3K, MOD04_L2) and Aqua (MYD04_3K, MYD04_L2) are used, which is reported 3K for 3Km 

and L2 for 10km The MODIS AOD data product was downloaded from NASA LAADS 

(https://ladsweb.modaps.eosdis.nasa.gov/). The southward Terra crosses about 10:30 Local Solar Time 

(LST), whereas, Aqua northward about 13:30 LST. The time difference between Terra and Aqua are 

approximately 1.5h and 4.5h in the northern Hemisphere and the southern Hemisphere respectively 

(Kaufman et al., 2005), The time interval for Hyderabad was 2.5h (Kharol et al., 2011). MODIS measures 

AOD with an estimated uncertainty of 0.05 AOD±0.15 for Level 2 over land (Remer et al., 2005) at 0.47and 

0.66mm extrapolated at 0.55mm (Ichoku, 2002). The two separate algorithms described in literature over land 

and ocean surfaces are adopted (Kaufman and Tanré, 1998).   

  The Dark Target (DT) aerosol algorithm is used to create a new 3 km aerosol product (Levy et al., 

2017). In this study to match overpass time of Terra/Aqua satellite in the region of Hyderabad, respective 

PM2.5 average concentrations at study locations available from the CPCB monitoring points over Hyderabad 

https://ladsweb.modaps.eosdis.nasa.gov/
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region were used. Data was extracted from HDF files with help of Python scripts for corresponding latitude 

and longitude of all locations. The CPCB motoring points located with nearest point in data entered location 

(haversine formula) of the each HDF file (Gupta and Follette-Cook, 2020). AOD single grid (3x3 or 5x5) data 

was used for missing data. The high AOD values represent higher pollution, cloud contamination and dust 

storm on the study region. To avoid uncertainties in AOD, higher values above 1 AOD were excluded in this 

study.  

2.2.2. Meteorological data: The meteorological data was obtained from CPCB 

(https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing) monitoring locations over Hyderabad. 

The meteorological parameters Temperature (AT), Relative Humidity, pressure (BP), Solar Radiation (SR), 

wind speed (WS) and direction (WD) and PM2.5 data collected over the period of May 2017 to May 2019 

(two years) was used in the study. For further analysis, flow chart in Fig. 2, gives details of the methodology 

adopted in the study for identification of source regions at receptor location.  

2.2.3. Multiple linear regression model: The multiple linear regression was established with in the PM2.5 and 

MODIS AOD along with meteorological parameters, the MLR shown in Eq.1. However, b0 represent the 

model intercept and the b1, b2, ..., b7, represent the model parameters to be estimated. The ɛ represent error 

term that individual outcomes will vary about that mean. The assumption was error terms are normally 

distributed and homoscedastic, that is, the variance of the errors is the same across all levels of the independent 

variables. The best fit location identified based on MLR, later the location latitude and longitude were used in 

the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) model for back trajectory 

analysis. 

𝑃𝑀2.5 = 𝑏0 + 𝑏1(𝐴𝑂𝐷) + 𝑏2(𝐴𝑇) + 𝑏3(𝑅𝐻) + 𝑏4(𝑊𝑆) + 𝑏5(𝑊𝐷) + 𝑏6(𝑆𝑅) + 𝑏7(𝐵𝑃) + 𝜀…Eq.1 

 

Fig. 2. Study flow chart for identification of source region 

2.2.3. Backward trajectory: The Back trajectory data collected from Global Data Assimilation System 

(GDAS), the U.S. National Oceanic and Atmospheric Administration (NOAA) (Wang et al., 2009) was used. 

The 7-day back trajectories at a height (100, 500 and 1000m) was considered as surface layer and elevated 

https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing
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layer (1500 and 2000m) for source analysis. The back trajectories require sophisticated computations of 

transport, chemical transformation, and deposition of pollutants and hazardous materials (Draxler and Hess., 

1998). 

2.2.4. CWT analysis: The spatial resolution 0.5×0.5° was used to find the source paths. The Concentrated 

Weighted Trajectory (CWT) value indicates the source strength (Cheng et al., 2013). The number of trajectory 

segment endpoints that end with in a grid cell will give PSCF value of the corresponding grid (Han et al., 

2007). In the CWT method, each grid cell is assigned a weighted concentration by averaging the sample 

concentration (Seibert et al., 1994). The trajectory endpoint time in the grid cells have been weighted by PM2.5 

corresponding trajectory. Concentration of each grid cell calculated based on below Eq.2 ( Chen et al., 2018). 

𝐶𝑊𝑇𝑖𝑗 =
∑ 𝑐𝑙𝜏𝑖𝑗𝐿
𝐿
𝑙=1

∑ 𝑐𝑙𝜏𝑖𝑗𝑙
𝐿
𝑙=1

……..Eq.2 

CƖ is the predicted mean concentration of a PM2.5; Ɩ denote the associated backward trajectory; τijƖ each 

segment endpoints in 0.5x0.5 grid cells (i, j); L presents the total number of backward trajectories consider in 

this study. 

2.2.5. PSCF analysis 

The Potential Source Contribution Function (PSCF) shown in Eq.3, defines the probability that a receptor area 

impacted from identified regions. Negral et al. (2020) reported studies on identification of sources using PSCF. 

Liao et al. (2017) used PSCF for identification of pollutants in China during the winter season. The 24hour 

average standards for PM2.5 concentration (60μg m-3) in ambient air quality standards of India, it was adopted 

from the studies by Li et al. (2020); Liao et al. (2017). The same criteria adopted in the present study. Grid 

cells with greater than the 60μg m-3 fall within the ijth grid cell (Zhang et al., 2015).  

𝑃𝑆𝐶𝐹𝑖𝑗 =
𝑀𝑖𝑗

𝑁𝑖𝑗
𝑊𝑖𝑗……. Eq.3 

Where, Mij represent the total number of back trajectories with each grid cell (i, j), Nij present the total number 

of back trajectories with respective each grid cell (i, j); Wij denote weighting function of back trajectory 

segment endpoints in a grid cell (i, j) (Fu et al., 2012). 

2.2.6. Cluster Analysis: The K-mean cluster technique is extensively used air mass trajectories to represent the 

pollutant pathways (Govender and Sivakumar, 2020). In the present study, k-mean cluster was adopted for 

clustering the back trajectories. The clustering technique shows the average trajectory paths for each cluster. 

The present study divided in to two parts, firstly prediction of PM2.5 based on meteorology and MODIS AOD. 

Second part attempts back trajectory analysis to identify the potential source regions. During the study, data 

outliers are removed from the secondary data obtained from CPCB and subsequently Z-score parameter was 

used for standardization of data. The filtered data divided into 80% for model development and 20% for model 
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validation. Statistical parameters (RMSE, NMB, d and R) were used to identify the best fit location. Sathe et 

al. (2019) used statistical analysis for his study as well. Furthermore, the source identification based on CWT, 

PSCF and Cluster analysis was carried out. GIS based software MeteoInfo tool was used for meteorological 

data visualization and analysis (Wang, 2014). The PSCF, CWT and Cluster analysis were analyzed using 

plugin TrajStat tool (Wang et al., 2009). Four seasons (Winter, Pre-monsoon, Monsoon and Post-monsoon) 

were considered during the study for source analysis. 

 

3. Results and discussion 

3.1. Variation of meteorological parameters 

The presence of particulates in the atmosphere will be reflected by AOD, the intensity of the light 

received by the instrument will shows as columnar property of atmosphere. Satellite-based AOD 

measurements have been widely used to predict the PM2.5 and PM10 (Shao et al., 2017; Soni et al., 2018). The 

mean AOD obtained during the study are shown in Fig. 3. The mean AOD variation at Bollarm (0.54±0.21), 

Central University (0.54±0.23), IDA (0.50±0.2), Patancheru (0.55±0.23) Sanathnagar (0.52±21) and Zoopark 

(0.47±0.22). High AOD was observed at Patancher and the least AOD at Zoopark location. Higher AOD 

values at Patancher is perhaps due to concentrated industrial activity while Zoopark represents minimum 

anthropogenic activity. Soni et al. (2018) reported average AOD as 0.42 and the range as 0.02–1.67 in Jaipur 

region. AOD values were higher during the pre-monsoon and winter with a subsequent decrease in the 

summer period. Similar results are reported by Pani and Verma, (2014). The temperature and relative 

humidity values are comparable to those reported in the Jaipur region reported by Soni et al. (2018). 

Temperature inversion leads to higher values of pollutants in the winter season at ground level (Yadav et al., 

2019). The wind speed and direction are also important parameters in the dispersion and transport of particles. 

These particles move along with the wind from one region to faraway regions depending on strength of wind 

and atmospheric stability conditions. Hence, the meteorological parameters crucial for the identification of the 

particulate concentration at the receptor location (Das et al., 2021; Y. Zhang et al., 2017). The influence of 

climate change on particulate pollution and trans-boundary aerosols was reported by Deb and Sil. (2019); 

Tiwari et al. (2015); Yadav et al. (2016). Fig. 3, shows the meteorology, PM2.5 and AOD of the six locations 

with standard deviations. Higher variations are observed in BP and SR at all locations. Lower deviations in 

AT, RH, PM and AOD are observed. This is perhaps due to the topography of land and climatic conditions. 

In the present study, the higher mean temperature was observed at the Patancher area (30.51oC) may be due 

to the industrial zone.  
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Fig. 3. Meteorological variation of all locations (a) RH(%) and Temperature(0C), (b) Wind speed (m s-1) and 

Wind direction (degrees) (c) Barometric pressure(mm) and Solar radiation(Wm-2) (d) PM2.5 (μg m-3) and 

AOD 

3.2. MODIS AOD for prediction of the PM2.5 

The MODIS (MOD_3K, MOD_L2, MYOD_3K and MYOD_L2) product was used in the current study. 

The AOD- PM2.5 relation is highly accurate in some locations in India (Chelani, 2018). In coastal areas PM2.5-

AOD relation was weaker (Yang et al., 2019). Few studies indicated positive and weaker correlation with in 

the AOD- PM2.5 (Chelani, 2018; Yang et al., 2019). However, in the present study positive correlation was 

established with in AOD- PM2.5 at some locations.  

 

Fig. 4. AOD- PM2.5 correlation with in MODIS product at all locations, (I) MOD_3K(3km), (II) 

MOD_L2(10km), (III) MYOD_3K(3km), (IV) MYOD_L2(10km), (a) Zoopark, (b) Sanathnagar, (c) 

Patancher, (d) IDA, (e) Central Univercity(CU, (f) Bollaram. 
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The linear regression results between AOD- PM2.5 are presented in Fig. 4. Results indicate weak 

positive correlation in some locations with relatively higher correlation at Bollaram. Single grid of each pixel 

was chosen for the study, the missing AOD data was replaced with average AOD of 3x3 or 5x5 grid. The 

variations are perhaps due to the urban conditions and geographical differences. Local dominating sources 

also result in variations. 

Multiple regression analysis of AOD and metrological parameters was used to obtain ground level 

PM 2.5 concentration. Statistical parameters (R, RMSE, d and NMB) for the six locations are presented in 

Table A1. Results indicted relatively good agreement at Zoopark when compared to other five locations. The 

scatter plots for observed and predicted concentrations (for 10km resolution of aqua and terra product) are 

presented in Fig. 5. Earlier studies reported similar correlation coefficients (0.30 to 0.46) between Level 3 

Terra/Aqua MODIS and MICROTOPS-II,AOD550 in all seasons (Kharol et al., 2011). 

 

Fig. 5. Scatter plot for PM2.5 Predicted and Observed at Zoopark location for four MODIS AOD 

product.  

Shao et al. (2017) in his studies on AOD-PM2.5 in Nanjing of the Yangtze River Delta, concluded that there 

was a high consistency of AOD versus PM2.5 and the correlation coefficient was (R2) 0.56. In the current 

study, the values are slightly lower around 0.4. Variations in MODIS are generally caused by deserts (Sathe 

et al., 2019) and cloud properties (Gopal et al., 2016).  

The MOD_3K product has negative Normalized Mean Bias (NMB) except for Zoopark location. The 

correlation coefficients were higher for Zoopark, IDA and Sanathnagar; lower values for Patancheru, Bollarm 

and CU regions. RMSE was higher (54μg m-3) at Patancher and low for other locations (11-15μg m-3). RMSE 

values at Patancher peaked in all MODIS collection when compared with other locations. The MOD_L2 

results indicated over-prediction at CU and Zoopark locations, while under prediction was observed for other 
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locations. The correlation was higher (0.41) at the Zoopark while correlation was low at Patancheru. The 

RMSE variation range (11-14μg m-3) except the Patancheru region. The MYOD_3K and MYOD_L2 have 

nearly similar values in RMSE, d and NMB indicating good agreement in correlation coefficient in 

MYOD_3K product. Greater resolution data resulted in higher deviation from the standard line in this study. 

Kumar et al. (2008) reported that the finer resolution of MODIS_AOD in addition to RH and atmospheric 

pressure results in better correlation for prediction of PM2.5 in New Delhi. The terra AOD product performed 

better than the aqua in the present study while 10km resolution data performed better than the 3km resolution 

data in the correlation analysis. Similar  results were reported by Wang et al. (2019). 

MODIS AOD product obtained for 10km and 3 km resolution is used. The quality of 3 km resolution was 

generating relatively high noise influencing accuracy of prediction. Munchak et al. (2013) also reported 

similar observation. The study considered linear relationship between PM2.5 and meteorological parameters 

while the PM2.5 formation mechanisms are not considered.  The model accuracies are influenced by PM2.5 

formation mechanism, spatiotemporal heterogeneities and geographical region.  

 

3.3. Back Trajectory analysis for source identification 

The MLR analysis was shown that the Zoo Park location was best fit model for prediction of PM2.5. Hence, 

that the Zoo Park location latitude and longitude has been considered for the back trajectory analysis. Local 

sources and long range transport of pollutants significantly affect the PM 2.5 at receptor location (Mahapatra 

et al., 2018). The crop residue burning dominant source at Indo Gangetic Plain (IGP) region, India (Ravindra 

et al., 2019). However, studies on the source identification based on trajectory are limited in India (Banerjee 

et al., 2015). This study demonstrates indications of probable sources for Hyderabad region. Previous studies 

also reported results of back trajectory analysis and effective origin source regions and long-range transport of 

pollutants (Conte et al., 2020; Hong et al., 2019). 

 

3.3.1. Concentration-Weighted Trajectory (CWT): 

The CWT analysis for all seasons with in the surface layer presented in Fig. 6(a, b, c, d) and elevated 

layers in Fig. A1 (d, e, f, g) (Fig. A1 shown in appendix). Results indicate the dominant concentrated paths in 

the winter season for both surface and elevated layers. The significant trajectory paths were seen from East 

Indian regions and coastal regions as major source paths for receptor location in winter. During the other 

seasons, weightage of trajectory is low. Two pathways, one from Central India and the second from Bay of 

Bengal are identified in pre-monsoon season. During the monsoon, trajectory from West India and Arabian 

Sea was observed to dominate. Trajectory from East India was observed in post-monsoon region. For surface 

layer, two pathways dominate in winter and pre-monsoon while one pathway dominated in the other two 
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seasons. Gebhart et al. (2011) implemented back trajectory for source identification of airborne sulphur and 

nitrogen. Dust outbreaks were identified using back trajectory in Spain (Cabello et al., 2016). Trajectory 

analysis was carried out for tracking hazardous air pollution from refinery fire (Shie and Chan, 2013). 

Comparative studies for source identification were attempted by Kong et al. (2013). 

In elevated layer, dominating paths are observed to be from Central India and East India for winter 

season. During the pre-monsoon the dominating path was from Central India while for post- monsoon, the 

dominating trajectories were from East India. For monsoon season, trajectories from West India and Arabian 

Sea dominated. Trajectories from Central India and East India were observed for both surface and elevated 

layers. Similar trajectories paths were observed in winter and post monsoon for surface and elevated layers 

while there were differences in the other seasons.  

 

  

  

Fig. 6. CWT analysis with different seasons at surface layer [same scale for all figures follows the figure (a) 

legend]. 

3.3.2. Potential Source Contribution Function (PSCF): 

The potential source contribution function shows the significance regions affecting the receptor 

location. PSCF (surface layer) for all four seasons in the study region is presented in Fig. 7 (I, II, III and IV). 

Fig. A2 (shown in appendix) for the elevated layer. For winter season, sources were observed to be from 

coastal and East direction. In the pre-monsoon, high contributions are from sea regions and from the West 

region. In this study, it is observed that the long-range transport of pollutants was very less in monsoon and 

post-monsoon seasons.  
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Fig. 7. PSCF analysis with different seasons at surface layer 

For the elevated layer, pollutants were dominating from East India regions in the winter season while the 

contributions are relatively lower for the other three seasons. The CWT and PSCF indicate the dominating 

paths and source regions. Dust contribution sources were identified from trajectory approach by Wang et al. 

(2006). The pollutants were observed to travel from far away regions to receptor locations (Jeong et al., 2017). 

3.3.3. Cluster analysis: Trajectory cluster analysis was applied to identify the cluster of each seasonal 

trajectory at receptor location. Fig. 8 (a, b, c and d) shows the winter, pre-monsoon, monsoon and post-

monsoon seasons at surface layer and Fig. A3 (e, f, g and h) (Fig. A3 shown in appendix) for elevated layer. 

The legend shows the heights of the trajectory with respective clusters. Based on direction six clusters were 

identified for the study. The surface layer clusters are dominating Central India and North West Indian regions 

in the winter season. The pre-monsoon season has the different direction clusters but the Bay of Bengal has 

the low-level trajectories. In the monsoon season, clusters from the Arabian Sea region and West India were 

observed. Most of the trajectories were from local regions in India for surface layer while the trajectories were 

from outside India for elevated layer. The elevated layer clusters are from for away regions indicating long 

range transport. For the winter season, three clusters were from high altitudes, while the monsoon season 

yielded low altitude clusters. The remaining clusters were moderate in altitude. 

Surface level trajectory cluster analysis is shown in Table A2 (Table A2 shown in Appendix). 

Winter_sl polluted cluster was Cluster I with mean concentration as 72.05μg m-3 and the number of polluted 
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trajectories was 179. Highest number of trajectories were observed in Winter_sl season. The least polluted 

trajectory means as 34.64μg m-3associated with cluster III in monsoon. 

The elevated layer cluster analysis is shown in Table A3 (Table A3 shown in Appendix). The highest 

polluted mean value cluster was cluster II in the winter_el season (71.09μg m-3), while least mean observed 

in monsoon season was (30.89μg m-3). The pre and post-monsoon season’s means were moderate in range 

50.95μg m-3 and 58.26μg m-3 respectively.  The polluted clusters have a smaller number of trajectories but the 

intensity of pollutant transport was more, compared to other clusters. 

  

  

Fig. 8. Cluster analysis with four seasons at surface layer 

 

3.4. Wind rose pattern over Hyderabad region 

 The wind rose diagrams shown in Fig. 9, indicate wind direction in the study area. The dominating 

wind direction was from the SE and SW direction at the Zoopark location in autumn season. The mean and 

standard deviation of wind speed at Zoopark were in the range of 0.78±0.7. The observations from the wind 

rose and back trajectory analysis indicate similar patterns in the wind direction for the study area. The back 

trajectory gives the air mass transport from faraway regions. For the other locations, the wind roses are 

presented in the research results section; Sanathnagar (Fig. A4), Patancher (Fig. A5), IDA (Fig. A6), Central 

University (Fig. A7), Bollaram (Fig. A8). The mean and standard deviation of wind speed were observed as 

Sanathnagar (1.25±0.5), Patancher (1.26±0.7), IDA (2.1±0.9), Central University (1.6±0.6), Bollaram 

(2.6±1.9). 
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Fig. 9. Zoopark wind rose diagram for all seasons.  

4. Conclusion 

In this study, assessment of ground-level PM2.5 based on multiple regression analysis with the meteorology 

and retrieved MODIS AOD was attempted. The study suggested that the MODIS terra AOD product seen 

the best fit for the perdition of PM2.5 at Zoo Park location among the six locations. Source identification based 

on trajectory-based analysis was attempted through CWT, PSCF and cluster analysis. The study identified the 

long-range transport of the PM2.5 and potential source regions contributing to PM2.5. East India and Coastal 

regions were the potential source regions at receptor locations in the winter season. Biomass burning and 

anthropogenic activities from potential source regions contribute to PM2.5 at the receptor location. The cluster 

analysis provided the main mechanism of transporting paths towards the receptor location. The wind rose 

pattern identified the local source regions at receptor location. The high PM2.5 aerosol mass concentration in 

Hyderabad City is a reflection of the high emission of local sources such as vehicular transport and 

anthropogenic activities in addition to long range transport as well. The dominating long range transport 

pollution at surface layer was observed in winter from East Coastal regions.  
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Appendix 

Table A1. Model performance statistical parameters 

 

Column1 Parameter Bollaram Central  

University 

IDA Patancher Sanathnagar Zoo 

park 

MOD_3K RMSE 15 15 11 54 10 12 
 

D 0.53 0.59 0.81 0.21 0.78 0.76 
 

NMB -0.15 -0.02 -0.02 -0.84 -0.04 0.05 
 

R 0.37 0.36 0.73 -0.43 0.69 0.6 

MOD_L2 RMSE 12 14 12 55 11 11 
 

D 0.52 0.66 0.71 0.22 0.73 0.85 
 

NMB -0.009 0.11 -0.03 -0.87 -0.03 0.1 
 

R 0.59 0.55 0.68 -0.39 0.62 0.8 

MYOD_3K RMSE 15 15 13 47 10 10  
D 0.52 0.73 0.62 0.25 0.81 0.74 

 
NMB -0.12 0.14 -0.08 -0.67 -0.02 0.01 

 
R 0.53 0.62 0.72 -0.34 0.75 0.58 

MYOD_L2 RMSE 14 16 11 44 11 11  
D 0.52 0.6 0.82 0.22 0.74 0.8 

 
NMB -0.12 0.11 -0.04 -0.67 -0.01 0.09 

 
R 0.46 0.4 0.77 -0.5 0.65 0.75 

 

 

 

 

  

Fig. A1. CWT analysis with different seasons at elevated layer 
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Fig. A2. PSCF analysis with different seasons at elevated layer 

 

 

 

 

  

 
 

Fig. A3. Cluster analysis with different seasons at elevated layer 
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Table A2. Polluted clusters and associated trajectory’s numbers at surface layer 

Winter _sl Number_traj Mean_value Standard 

deviation 

Polluted_num Polluted_mean_value Polluted_stdev Ratio(%) 

1 202 72.05 8.43 179 74.52 4.83 21.6 

2 45 65.21 11.61 29 72.81 5.75 8.33 

3 79 68.07 1031 61 72.65 5.78 38.1 

4 163 64.46 12.43 98 73.33 5.55 13.52 

5 42 63.71 14.23 26 73.4 5.29 7.22 

Pre_monsoon 
       

1 118 43.85 7.96 0 0 0 18.29 

2 49 48.85 10.7 6 69.44 7.18 7.91 

3 51 50.71 10.54 9 66.14 4 7.91 

4 199 48.42 11.73 38 66.79 4.4 31.3 

5 115 42.25 11.75 11 67.88 7.37 19.22 

6 98 47.53 9.57 11 66.37 5.69 15.3 

monsoon 
       

1 154 21.9 5.16 0 0 0 22.59 

2 89 25.93 7.04 0 0 0 12.4 

3 111 34.64 12.9 10 62.54 2.57 17.15 

4 124 18.9 3.62 0 0 0 18.9 

5 133 21.75 4.92 0 0 0 20.9 

6 55 32.85 9.82 2 63.91 4.78 7.95 

Post 

monsoon 

       

1 97 55.11 19.22 42 71.21 6.44 29.23 

2 60 50.37 23.19 24 70.21 5.04 17.76 

3 55 40.79 13.32 4 67.08 5.91 15.03 

4 26 54.95 25.27 15 72.26 5.41 8.2 

5 67 42.98 22.13 16 69.31 6.21 22.4 

6 16 33.33 27.28 4 72.18 7.53 7.38 

 

Table A3. Polluted clusters and associated trajectory’s numbers at Elevated layer 

Winter _el Number 

_traj 

Mean 

_value 

Standard deviation Polluted 

_num 

Polluted 

_mean_value 

Polluted_stdev Ratio(%) 

1 35 67.31 9.93 24 72.89 6.13 18.6 

2 43 71.09 7.92 39 73.1 4.8 9 

3 23 64.09 11.09 16 70.01 7.03 12.6 

4 57 68.8 9.5 44 73.17 4.8 57 

5 7 66.85 1.89 5 72.67 5.19 3.54 

6 29 68.26 10 19 74.68 4.7 14.65 

Pre monsoon               

1 38 50.95 10.7 8 65.81 2.95 9.30 

2 101 46.1 10.18 10 67.1 6.06 23.72 
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3 47 46.78 10.8 6 69.95 6 10.93 

4 72 48.33 10.31 8 67.03 4.56 16.74 

5 51 48.51 11.8 7 67.56 8.56 12.09 

6 111 44.94 10.99 11 65.99 3.4 27.21 

Monsoon               

1 105 19.18 3.84 0 0 0 22.75 

2 70 22.77 5.92 0 0 0 17.62 

3 50 3.89 10.25 0 0 0 10.25 

4 96 23.99 6.58 0 0 0 19.67 

5 104 30.53 12.6 8 62.77 2.85 23.16 

6 29 21.03 4.15 0 0 0 6.56 

Post monsoon               

1 26 56.38 24.59 16 72.17 5.57 13.1 

2 36 38.56 21.38 5 70.59 7.19 17.2 

3 45 45.27 20.89 12 68.1 6.56 21.3 

4 58 58.26 20.08 33 71.54 5.75 25 

5 21 44.42 15.59 1 74.2 0 8.61 

6 28 39.25 17.67 3 69 7.82 14.75 

 

 

Fig. A4. Sanathnagar wind rose diagram for all seasons 
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Fig. A5. Patancher wind rose diagram for all seasons 

 

Fig. A6. IDA wind rose diagram for all seasons 
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Fig. A7. CU wind rose diagram for all seasons 

 

 

Fig. A8. Bollaram wind rose diagram for all seasons 


