Summability, Some Sequence, Some Sequence Spaces and Their Matrix Transformations

Suresh Ray¹ | Shailendra Kumar Mishra²

¹Department of Mathematics | Tri-Chandra Multiple Campus Ghantaghar Kathmandu, T.U. Nepal
²Department of Engineering Science and Humanities Pulchowk Campus Institute of Engineering, T.U. Nepal

¹sureshray15@yahoo.com | ²skmishra12@hotmail.com

ABSTRACT

The most general linear operator to transform from new sequence space into another sequence space is actually given by an infinite matrix. In the present paper we represent some sequence spaces and their matrix transformations and summability.

KEY WORDS

Duals, Kothe-Toeplitz, matrix transformation Sequence space, summability.

INTRODUCTION

Concepts of summability:

Let $A = (a_{nk})_{\infty, k=1}^n$ be an infinite matrix, $x = (x_k)_{\infty, k=1}$ be a sequence, $e = (1, 1, 1, \ldots)$, $A_n x = \sum_{k=1}^{\infty} a_{nk} x_k$ and $Ax = A (a_n x)_{\infty, k=1}$ be the sequence of the A transforms of x. There are three concepts of summability.

• Ordinary summability: x is summable A if
 \[\lim_{n \to \infty} A_n x = \ell \text{ for some } \ell \in \mathbb{C} \]

• Strong summability: x is strongly summable A with index $p > 0$ if
 \[\lim_{n \to \infty} (|x - \ell| p) = \lim_{n \to \infty} \sum_{k=1}^{\infty} |a_{nk} x_k - \ell| p = 0 \]
 \[\text{for some } \ell \in \mathbb{C} \]

• Absolute summability: x is absolutely summable A with index $p > 0$ if
 \[\sum_{k=1}^{\infty} |A_n x - A_n - 1x| p < \infty. \]

An example

Example 1.1 Let the matrix A be given by $a_{nk} = 1/n$ for $1 \leq k \leq n$ and $a_{nk} = 0$ for $k > n (n = 1, 2, \ldots)$. Then the A transforms of the sequence x are the arithmetic means of the terms of x, that is,

$\sigma_n = \frac{1}{n} \sum_{k=1}^{\infty} x_k$ and A defines the Cesàro method C_1 of order 1.

• Every convergent sequence is summable C_1 and the limit is preserved

• The divergent sequence $((-1)^k)_{k=1}^n$ is summable C_1 to 0

• Strong summability of index 1 implies ordinary summability to the same limit; the converse is not true, in general

• Absolute summability with index 1 implies ordinary summability

A sequence space is a linear space of functions defined on the set of counting numbers. Thus the sequence space is set of scalar sequence (real or complex) which is closed under coordinate wise addition and scalar multiplication. If it is closed under co-ordinate wise multiplication as well, then it is called the sequence algebra. We are concerned mainly on the problem of identification, inclusion
problem and matrix mapping problems. The study of sequence spaces is thus a special case of the more general study of function space, which is in turn a branch of functional analysis.

Here, we begin some definitions and notations:

Normed Space:

Normed Space is a pair $(X, ||.||)$ of a linear space X and norm $||.||$ on X.

Banach Space:

A Banach Space $(X, ||.||)$ is a complete normed space where completeness means that every sequence (x_n) in X with $||x_n - x|| \to 0$ as $n \to \infty$, there exists $x \in X$ such that $||x_n - x|| \to 0$ as $n \to \infty$.

Paranorm:

A paranorm ‘g’ defined on a linear space X, is a function: $X \to R$ having the following usual properties:

(i) $g(\theta) = 0$, where θ is the 0 element in X.

(ii) $g(x) = g(-x)$, for all $x \in X$.

(iii) $g(x + y) \leq g(x) + g(y)$ for all $x, y \in X$.

(iv) The scalar multiplication is continuous that is $\lambda (n \to g(x_n - x))$ as $n \to \lambda$ for all $\lambda \in C$ and $x_n \in X$, $g(\lambda_n x_n - \lambda x) \to 0$ as $n \to \infty$.

(v) $g(x) = 0 \to x = 0$.

A paranormed space:

A paranormed space is a linear space X together with a paranorm g.

The space $l_\infty(p)$:

Let $\{p_k\}$ be a bounded sequence of strictly positive real numbers. We define

$$l_\infty(p) = \{ x = \{x_k\} : \sup_k |x_k|^{p_k} < \infty \}$$

For $x, y \in l_\infty(p)$, we define

$$d(x, y) = \sup_k |x_k - y_k|^{p_k/M}$$

Where $M = \max (1, \sup p_k)$. $l_\infty(p)$ is a metric space with metric d.

If $p_k = p$ for all k, then we write l_∞ for $l_\infty(p)$ Here l_∞ is the set of all bounded sequences $x = \{x_k\}$ of real or complex numbers and is a metric space with the natural metric

$$d(x, y) = \sup_k |x_k - y_k|.$$
If \(p_k = p \) for all \(k \), then we write \(c \) and \(c_0 \) for \(c(p) \) and \(c_0(p) \) respectively. \(c \) and \(c_0 \) represent the sets of all convergent sequences and null sequences respectively.

Note that \(c \) and \(c_0 \) are metric spaces with the metric

\[
d(x, y) = \sup_k | x_k - y_k |.
\]

In \(c \) if we define \(p(x, y) = | \lim(x_n - y_n) | \),

then although \(p(x, y) = 0 \), this does not always imply that \(x = y \).

For example if we take \(x_k = 1/k \) and \(y_k = 0 \) for all \(k \), observe that the other two axioms of a metric are satisfied by \(\rho \). Thus \(\rho \) is not a metric on \(c \), but is a semi metric.

Duals:

If \(X \) is a sequence space, We define

\[
x^\beta = \{ a = (a_k) : \sum_{k=1}^{\infty} a_k x_k \text{ is convergent for each } x \in X \}.
\]

Theorem (1):

Let \(p_k > 0 \) for every \(k \), then

\[
[S_{\infty}(p)]^\beta = \cap_{N=2}^{\infty} \{ a = (a_k) : \sum_{k=1}^{\infty} a_k [\sum_{m=1}^{N} N^{1/p_k}] \text{ converges } \sum_{k=1}^{\infty} N^{1/p_k} | R_k | < \infty, N > 1, \text{ where } R_k = \sum_{v=k}^{\infty} a_v \} \text{ (we assume that } \sum_{k=1}^{\infty} z_k = 0 \text{ for } k > 1) \}.
\]

Proof: Suppose that \(x \in S_{\infty}(p) \), we choose \(N > 1 \), so that \(\sup_N | x_k | = 0 \), we write

\[
\sum_{k=1}^{m} a_k x_k = \sum_{k=1}^{m} R_k x_k - R_{m+1} \sum_{k=1}^{m} x_k \quad (m = 1, 2, 3, \ldots)
\]

Since \(\sum_{k=1}^{\infty} | R_k | \sum_{k=1}^{\infty} x_k \leq \sum_{k=1}^{\infty} | R_k | N^{1/p_k} < \infty \), it follows that \(\sum_{k=1}^{\infty} R_k x_k \) is absolutely convergent. By corollary 2 in [6], the convergence of \(\sum_{k=1}^{\infty} a_k (\sum_{v=k}^{\infty} N^{1/p_m}) \) implies that \(\lim_{m \to \infty} R_{m+1} \sum_{k=1}^{m} N^{1/p_m} = 0 \). Hence, it follows from (1) that \(\sum_{k=1}^{\infty} a_k x_k \) is convergent for each \(x \in S_{\infty}(p) \). This yields a \(\epsilon (S_{\infty}(p))^{\beta} \).

Conversely, suppose that \(a \in S_{\infty}(p) \), then by definition, \(\sum_{k=1}^{\infty} a_k x_k \) is convergent for each \(x \in S_{\infty}(p) \).

Since \(e = (1, 1, 1, \ldots) \) \(S_{\infty}(p) \) and \(x = [\sum_{m=1}^{\infty} N^{1/p_m}] \epsilon S_{\infty}(p) \) so,

\[
\sum_{v=1}^{\infty} a_v \quad \text{and} \quad \sum_{v=1}^{\infty} a_v [\sum_{m=1}^{\infty} N^{1/p_m}] \text{ are respectively convergent. By using corollary 2 in [20], we find that}
\]

\[
\lim_{m \to \infty} R_{m+1} \sum_{m=1}^{\infty} N^{1/p_m} = 0.
\]

Thus, we get from (1) that the series \(\sum_{k=1}^{\infty} R_k x_k \) converges for each \(x \in S_{\infty}(p) \).

Since \(x \in S_{\infty}(p) \) if and only if \(\Delta x \in S_{\infty}(p) \). This implies that \(R = \{ R_k \in (S_{\infty}(p))^\beta \}. \) It now follows from a theorem 2 in [10] that \(\sum_{k=1}^{\infty} | R_k | N^{1/p_k} \) converges for all \(N > 1 \).

This completes the proof of the theorem.

Theorem (2):

Let \(p_k > 0 \) for every \(k \), then

\[
[S_{\infty}(p)]^\beta = SM_{\infty}(p), \text{ where } SM_{\infty}(p) = \cup_{N=1}^{\infty} \{ a = (a_k) : \sum_{k=1}^{\infty} a_k [\sum_{m=1}^{N} N^{1/p_m}] \text{ converges and } \sum_{k=1}^{\infty} | R_k | N^{1/p_k} < N > 1 \}.
\]

Proof:
Let $\epsilon \in SM_0(p)$ and $x \in SC_0(p)$. We choose an integer $N > 1$ such that $|\Delta x_k|p_k < -N$.

We have $\sum_{k=1}^{N} a_kx_k = \sum_{k=1}^{m} R_k\Delta x_k - R_{m+1}\sum_{k=1}^{m}\Delta x_k$; $m = 1, 2, 3, \ldots$.

Since $\sum_{k=1}^{\infty} |R_k\Delta x_k| \leq \sum_{k=1}^{\infty} |R_k| |\Delta x_k| \leq \sum_{k=1}^{\infty} |R_k| \frac{N^{-1/p_k}}{<\infty}$, it follows that,

$\sum_{k=1}^{\infty} R_k\Delta x_k$ is convergent absolutely. The convergence of $\sum_{k=1}^{\infty} a_k \left(\sum_{m=1}^{k} N^{-1/p_m} \right)$ implies that

$R_{m+1}\sum_{k=1}^{m} N^{-1/p_i} = o(1)$ $\ (m \to \infty)$. Hence $\sum_{k=1}^{\infty} a_kx_k$ converges for each $x \in SM_0(p)$. That is, $a \in \left(SC_0(p) \right)^{\beta}$.

Conversely, let $a \in \left(SC_0(p) \right)^{\beta}$, then

for any $x \in SM_0(p)$, $\sum_{k=1}^{\infty} a_kx_k$ converges. Since the sequence $x = \{\sum_{m=1}^{k} N^{-1/p_m}\}$ by choosing $\epsilon > \frac{1}{N}, (N = 2, 3, \ldots) \in SC_0(p)$ it follows that $\sum_{k=1}^{\infty} a_k (\sum_{m=1}^{k} N^{-1/p_m})$ converges $\Rightarrow \sum_{m=1}^{k} N^{-1/p_m} \in SC_0(p)$]

To show that $\sum_{k=1}^{\infty} |R_k| \frac{N^{-1/p_k}}{<\infty}, N > 1$, let us assume that $\sum_{k=1}^{\infty} |R_k| \frac{N^{-1/p_k}}{<\infty}, N > 1$, then from Theorem 6, it follows that $R \not\in Mo(p) = \{C_0(p)\}\beta$, then there exists a sequence $x = \{1/k\}, k \geq 1 \epsilon C_0(p)$ such that

$\sum_{k=1}^{\infty} R_k 1/k$ does not converge. Although, if we define

$y = \{y_k\}$ by $y_k = \sum_{n=1}^{k} \frac{1}{n}$, then $y \in SC_0(p)$, but $\sum_{k=1}^{\infty} a_ky_k = \sum_{k=1}^{\infty} a_k \left(\sum_{n=1}^{k} \frac{1}{n} \right) = \sum_{k=1}^{\infty} R_k 1/k$.

Hence $\sum_{k=1}^{\infty} a_ky_k$ does not converge for $y \in SC_0(p)$, a contradiction is due to the fact that

$a \in \left(SC_0(p) \right)^{\beta}$. So

$\sum_{k=1}^{\infty} |R_k| \frac{N^{-1/p_k}}{<\infty}, N > 1$.

This completes the proof of the theorem.

MATRIX MAPS:

Let X and Y be any two sequence spaces. Let $A = (a_{n,k})_{n,k=1}^{\infty}$

$(1 \leq n, k \leq \infty)$ be an infinite matrix of scalar entries.

$Ax = (A_n(x))_{n=1}^{\infty} \epsilon Y$, where $A_n(x) = \sum_{k=1}^{\infty} a_{nk}x_k$ is a convergent sequence for each $n \ (n = 1, 2, 3, \ldots)$. We say that A defines a matrix map from X into Y and we write $A \epsilon (X, Y)$. By (X, Y), we mean the class of matrices A such that $A \epsilon (X, Y)$. The main aim is to characterize the spaces $(S_{\infty}(p), c_0)$. We shall first establish the following simple lemma 1.

Lemma (1):

Let X and Y be two sequence spaces, and let $\Delta Y = \{y = \{y_k\}: \Delta y = (y_k - y_{k-1}) \epsilon Y, y_0 = o\}$, then $A \epsilon (X, Y)$ if and only if $A = (a_{n,k} - a_{n-1,k})_{n,k=1}^{\infty} = (b_{n,k})_{n,k=1}^{\infty} = B \epsilon (X, Y)$. With lemma 1, (i, ii) in [10] or, Theorem 3 in [10] or, Theorem 5b (i) and Theorem 7 in [24], a characterization of the classes $(l(p), S_{\infty})$ or $(l_{\infty}(p), S_{\infty})$ or $((l(p), S_{\infty}(q)))$ $(q \epsilon l_{\infty})$ immediately follows

In [6] the authors have characterized the spaces $(S_{\infty}(p), l_{\infty})$ iff the matrix A satisfy following the conditions:

Theorem 3:

Vol. 1 No. 1 32 | Page

www.phdcentre.edu.np
Let $p_k > 0$ for every k then, $A \in (Sl_{\infty}(p), l_{\infty})$ if

(i) $\sup_n \left(\sum_{k=1}^{\infty} a_{nk} \left(\sum_{m=1}^{\infty} N^{1/p_m} \right) \right) < \infty, N > 1.$

(ii) $\sup_n \left(\frac{1}{N^{1/p_k}} \left(\sum_{v=k}^{\infty} a_{nv} \right) \right) < \infty, N > 1.$

Proof: We first prove that these conditions are necessary.

Suppose that $A \in (sl_{\infty}(p), l_{\infty})$. Since $x = (x_k) = (\sum_{m=1}^{k} N^{1/p_m})$
belongs to $sl_{\infty}(p)$, the condition (i) holds. In order to see that (ii) is necessary we assume that for $N > 1$,

$$\sup_n \left(\sum_{k=1}^{\infty} N^{1/p_k} \left(\sum_{v=k}^{\infty} a_{nv} \right) \right) = \infty.$$

Let the matrix B be defined by

$$B = (b_{nk}) = \left(\sum_{v=k}^{\infty} a_{nv} \right).$$

Then it follows from Theorem 1.12.8 that $B \notin (sl_{\infty}(p), l_{\infty})$. Hence, there is a sequence $x \in sl_{\infty}(p)$ such that

$$\sup_k |x_k|^{p_k} = 1 \text{ and } \sum_{k=1}^{\infty} b_{nk} x_k \neq O(1).$$

We now define the sequence $y = (y_k)$ by

$$y_k = \sum_{v=1}^{k} x_v \quad (k \in \mathbb{N}),$$

$$y_0 = 0.$$

Then $y \in sl_{\infty}(p)$ and $\sum_{k=1}^{\infty} a_{nk} y_k = \sum_{k=1}^{\infty} b_{nk} x_k \neq O(1).$

This contradicts that $A \in (sl_{\infty}(p), l_{\infty})$. Thus, (ii) is necessary.

We now prove the sufficiency part of the theorem.

Suppose that (i) and (ii) of the theorem hold. Then $A_n \in (sl_{\infty}(p))^\beta$ for each $n \in \mathbb{N}$.

Hence $A_n(x) = \sum_{k=1}^{\infty} a_{nk} x_k$ converges for each $n \in \mathbb{N}$ and for each $x \in sl_{\infty}(p)$. Following the argument used in lemma 1, we find that if $x \in sl_{\infty}(p)$ such that $\sup_k |\Delta x_k|^{p_k} < N$, then

$$\sum_{k=1}^{\infty} a_{nk} x_k \leq \sum_{k=1}^{\infty} \frac{1}{N^{1/p_k}} \left(\sum_{v=k}^{\infty} a_{nv} \right);$$

$$\leq \sup_n \left(\sum_{k=1}^{\infty} N^{1/p_k} \left(\sum_{v=k}^{\infty} a_{nv} \right) \right);$$

$$< \infty.$$

This proves that $AX \in l_{\infty}$. Hence, the theorem is proved.

Theorem (4):

Let $p_k > 0$, for every k, then $A \in (Sl_{\infty}(p), c)$ if and only if

(i) $R \in (l_{\infty}(p), c)$ where $R = (r_{n,k}) = [\sum_{v=1}^{\infty} a_{nv}]$ \quad (n, k = 1, 2, 3, ...).

(ii) $A_n (\sum_{i=1}^{k} N^{1/p_i}) \in c$ \quad (n, k = 1, 2, 3, ...) for all integers, $N > 1$.

(iii) $\lim_{n \to \infty} a_{nk} \alpha_k$ \quad (k = 1, 2, 3, ...).

Proof: Let us first prove the sufficiency condition. For consider any $x \in Sl_{\infty}(p)$, we choose $N > 1$, so that $\sup_k |\Delta x_k|^{p_k} < N$. We write,
\[\sum_{k=1}^{n} a_{n,k} x_k = \sum_{k=1}^{m} a_{n,k} \Delta x_k - r_{n+1, n} \sum_{k=1}^{m} \Delta x_k \quad (m = 1, 2, 3, \ldots). \tag{2} \]

By condition (ii) \[\sum_{k=1}^{\infty} a_{n,k} \left[\sum_{i=1}^{k} N_i^i \right] \] is convergent for each \((n = 1, 2, 3, \ldots)\). Hence, by corollary 2 in [20] it follows that

\[\lim_{m \to \infty} r_{n+1,m} \sum_{i=1}^{k} N_i^i \overset{\text{c}}{=} 0. \] By condition (i), \(R \in (l_{\infty}(p), c) \), and since \(x \in S_{\infty}(p) \) if and only if \(\Delta x \in l_{\infty}(p) \). Hence, by corollary [2] in [20] it follows that

\[\sum_{k=1}^{\infty} |r_{n,k}| N^{1/p_k} \] is uniformly convergent in \(n \) and \(\lim_{n \to \infty} r_{n,k} \) exists for each \((k = 1, 2, 3, \ldots)\).

Since \[\sum_{k=1}^{\infty} |r_{n,k}| N^{1/p_k} \] from (2) we find that \[\sum_{k=1}^{\infty} a_{n,k} x_k \] is absolutely and uniformly convergent in \(n \). Finally, we have

\[\lim_{n \to \infty} \sum_{k=1}^{\infty} a_{n,k} x_k = \sum_{k=1}^{\infty} a_{n,k} x_k. \] This proves the sufficiency condition.

The necessities of (iii) and (ii) are respectively obtained by taking \(x = e = (1, 1, 1, \ldots) \in S_{\infty}(p) \) and \(x = \left(\sum_{i=1}^{k} N_i^i \right) \) \((k = 1, 2, 3, \ldots, i \in S_{\infty}(p))\). Now consider the necessity of (i). If it is not true, then there exists \(x = (x_v) \in l_{\infty}(p) \) with \(\text{supp}_v[x_v] p_v = 1 \) such that \[\left(\sum_{v=1}^{\infty} a_{n,v} y_v \right) \overset{\text{c}}{=} 0. \] Although if we define a sequence \(y = (y_k) \) by

\[y_v = \sum_{i=1}^{v} x_v \quad (v = 1, 2, 3, \ldots) \] then \(y \in S_{\infty}(p) \) but \[\sum_{v=1}^{\infty} a_{n,v} y_v = \sum_{v=1}^{\infty} r_{n,v} x_v \not\in c. \] This contradicts the fact that \(A \in (S_{\infty}(p), c \) and therefore (i) must hold.

Before characterizing the class \((S_{\infty}(p), c_s)\), we add one more notation, for any \(n > 1, we write \)

\[t_n (AX) = \sum_{i=1}^{n} A_i (x) = \sum_{i=1}^{\infty} b_{n,i} x_i. \]

\((n = 1, 2, 3, \ldots).\) This completes the proof of the theorem.

Theorem (5):

Let \(p_k > 0 \), for every \(k \), then \(A \in (S_{\infty}(p), c_s) \) if and only if

(i) \(C \in (S_{\infty}(p), c_s) \) where \(C = (C_{n,k}) \ (\sum_{i=1}^{n} \sum_{k=1}^{\infty} a_{i,k}) \ (n, k = 1, 2, 3, \ldots). \)

(ii) \(B_n \ [\sum_{i=1}^{k} N_i^i] \in c_s \ (n, k = 1, 2, 3, \ldots) \) for all integers, \(N > 1 \).

(iii) \[\lim_{n \to \infty} b_{n,k} = \lim_{n \to \infty} \sum_{i=1}^{\infty} a_{i,k} = \beta_k \ (k = 1, 2, 3, \ldots). \]

Proof:

This theorem follows immediately from theorem (4);

Let us first prove the sufficiency condition. For consider any \(x \in S_{\infty}(p) \), we choose \(N > 1, so that \)

\(\text{supp}_k |\Delta x_k| p_k < N.\) we write

\[\sum_{k=1}^{m} b_{n,k} x_k = \sum_{k=1}^{m} c_{n,k} \Delta x_k - C_n, m+1 \sum_{k=1}^{m} \Delta x_k \quad (m = 1, 2, 3, \ldots) \] and the convergence of

\[\sum_{k=1}^{m} b_{n,k} \sum_{i=1}^{\infty} N_i^{1/p_i} \] implies that

\[\lim_{m \to \infty} C_n m+1 \sum_{i=1}^{\infty} N_i^{1/p_i} = 0. \]

Characterization of \((l(p), S_{\infty}(q))\), \(q \in l_{\infty} \) follows from Theorem 5 (ii) [28] with lemma 1.

This completes the proof of the theorem.

CONCLUSION
The results obtained in this research paper are very closely linked with the summability theory and matrix transformations. So the practical applications of this research paper have the same applicability as those of summability theory and matrix transformation between sequence spaces.

BIBLIOGRAPHY

Fricke G. H. and Fridy J. A, sequence transformations that guarantee a given rate of convergence, pacific Journal Math 146 (2), 1990 (239-246).
