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ABSTRACT                    
The most general linear operator to transform from new sequence space into another sequence space is actually 

given by an infinite matrix. In the present paper we represent some sequence spaces and their matrix 

transformations and summability.  
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INTRODUCTION 

Concepts of summability: 

Let A =(ank ) ∞n, k=1 be an infinite matrix, x = (xk ) ∞n, k=1  be a sequence, e =1, 1, 1 · · · ),   x 

=∑      
 
    and Ax = A =(anx ) ∞n, k=1 be the sequence ofthe A transforms of x. There are three 

concepts of summability. 

• Ordinary summability : x is summable A if 

 limn→∞   x = ℓ for some ℓ ∈ |C 

• strong summability : x is strongly summable A with index p > 0 if 

limn→∞  (|x − ℓ · e|
p
) = limn→∞∑    

 
                  

ank|xk − ℓ|
p
 = 0 for some ℓ ∈ |C 

• absolute summability : x is absolutely summable A with index p > 0 if 

 ∑                     
    

An example 

Example 1.1 Let the matrix A be given by     = 1/n for 1 ≤ k ≤ n and 

    = 0 for k > n (n = 1, 2, . . . ). Then the A transforms of the sequence 

x are the arithmetic means of the terms of x, that is, 

   =1/n∑   
 
    and A defines the Ces`aro method C1 of order 1. 

• Every convergent sequence is summable C1 and the limit is preserved 

• the divergent sequence ((−1)
k
)

k
k=1 is summable C1 to 0 

• strong summability of index 1 implies ordinary summability to the same 

limit; the converse is not true, in general 

• absolute summability with index 1 implies ordinary summability 

A sequence space is a linear space of functions defined on the set of counting numbers.  Thus the 

sequence space is set of scalar sequence (real or complex) which is closed under coordinate wise 

addition and scalar multiplication.  If it is closed under co-ordinate wise multiplication as well, then it 

is called the sequence algebra.  We are concerned mainly on the problem of identification, inclusion 
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problem and matrix mapping problems. The study of sequence spaces is thus a special case of the 

more general study of function space, which is in turn a branch of functional analysis. 

Here, we begin some definitions and notations:  

 Normed Space:  

Normed Space is a pair (X,         of a linear space X  and norm ||.|| on X. 

Banach   Space: 

A Banach Space (X, ||  ||) is a complete normed space where completeness means that every sequence 

(  )  in  X    with ||      ||→0 as m, n→ , there exists x     

 such that ||  -x|| →0 as  n→   

Paranorm: 

A paranorm „g‟ defined on a linear space X, is a function: X   having the following usual 

properties: 

(i)  g(  = o, where   is the o element in X. 

(ii) g(x) = g(-x), for all x      

(iii) g(x + y) ≤ g(x) +g(y) for all x, y      

(iv) The scalar multiplication is continuous that is     λ (n         g(xn-x)    as n 
       λn λ          xn x      g(    - λ x)            

(v) g(x) =o       

A paranormed space: 

A paranormed space is a linear space X together with a paranorm g. 

The space  ∞(p) : 

Let {  } be abounded sequence of strictly positive real numbers. We define 

     = { x= {  } :  
   
 

 |    
  < } 

For x , y ε        ,we define 

d(x, y)=   
   
 

  |          /M 

Where M = max (1, sup   ).        is a metric space with metric d. 

 If    =p for all k, then we write   for        . Here     is the set of all bounded sequences x = 

{  } of real or complex numbers and is a   metric space with the natural metric 

d(x, y) =   
   
 

 |       |. 

 Spaces c(p) and   (p) : 

With {  }, we define  

c(p) ={x = {  } :         →0 as k→  for some     ε C} and 

c0(p) ={x = {  } :     
  →0 as k→   } 

c(p) and c0(p) are the metric spaces with metric 

d(x , y)  =    
   
 

 |          /M 
,  where M = max (1, sup  ). 

The spaces c   and     :  
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If     = p for all k, then we write c and c0 for c(p) and c0(p)  respectively.  c and c0 represent the sets of 

all convergent  sequences  and null sequences respectively. 

Note that c and c0 are metric spaces with the metric 

d(x ,y) =  
   
 

 |   -   |. 

In c if we define p(x, y) = | lim(   –  ) |, 

then although p(x, y) =0, this does not always imply that x = y. 

For example if we take    =1/k and   =0 for all k, observe that the other two axioms of a metric are 

satisfied by  Thus   is not a metric on c, but is a semi metric. 

Duals: 

If X is a sequence space, We define 

   = {a=(  ) : ∑     
 
     is convergent for each  x ε X}. 

Theorem (1): 

 Let       for every k, then 

[       ]  =⋂          
 
   :∑   [∑       

   
 
    ]} converges∑        

   1/             
      where    = ∑   

 
       (we assume that ∑   

 
    = o (k       

Proof: Suppose that x            we choose N     so that sup              we write 

∑     
 
    = ∑      

 
        ∑     

 
                                     (1) 

Since ∑           
 
      ∑     

 
    1/                     ∑      

 
    is absolutely 

convergent. By corollary 2 in [6], the convergence of ∑    
 
   ( ∑   

   1/Pm ) implies that 

          ∑   
   

1/Pm = o. Hence, it follows from (1) that∑     
 
    is convergent for each x 

      (p). This yields a   (        )
 

. 

Conversely, suppose that a  (        )
 

 , then by definition, ∑     
 
    is convergent for each x 

            

Since e = (1, 1, 1,..)           and x = [ ∑   
   1/Pm ]            so, 

∑   
 
     and ∑   

 
   [ ∑   

   1/Pm ] are respectively convergent. By using corollary 2 in [2o], we 

find that 

         ∑   
   1/Pm = o. 

Thus, we get from (1) that the series ∑      
 
    converges for each x          . 

Since x            if and only if                                                      It 
now follows from a theorem 2 in [1o] that ∑       

 
   1/pk converges for all N     

This completes the proof of the theorem. 

Theorem (2): 

 Let                         

[        ]
  = S  (p), where S  (p) = ⋃           ∑   

 
       [ ∑   

   -1/Pm ] converges 

and ∑     
 
                 

Proof: 
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 Let a   S  (p) and x     o(p). We choose an integer N                  pk    N-1. 

We have  ∑     
 
    = ∑      

 
    -      ∑    

 
      (m = 1, 2, 3, …). 

Since ∑        
 
        ∑           

 
      ∑     

 
               it follows that, 

∑      
 
    is convergent absolutely. The convergence of 

∑   
 
    ( ∑   

   -1/Pm ) implies that  

     ∑   
   -1/Pi  = o (1)  (m     Hence ∑     

 
    converges for each x           That is, 

a   [       ]
 . 

Conversely, let a  [      ]
        

                     ∑     
 
    converges. Since the sequence x= ∑   

   -1/Pm} by choosing 

  
 

 
                   it follows that ∑   

 
    

 ( ∑   
   -1/Pm ) converges  [Because ∑    

   -1/pm      o(p) ] 

To show that ∑     
 
                   let us assume that ∑     

 
              

   then from Theorem 6 , it follows that R   Mo(p) = [      ]
 , then there exists a sequence x = 

{1/k}, k        (p) such that 

∑   
 
    1/k does not converse. Although, if we define 

y = {   } by     = ∑
 

 
  

     then,  y     o(p), but ∑     
 
    =  ∑   

 
   { ∑

 

 

 
    } = ∑   

 
    

1/k. 

Hence ∑     
 
    does not converge for y     o(p),  a contradiction is due to the fact that 

a   [       ]
   So 

∑      
       

             

This completes the proof of the theorem. 

 MATRIX MAPS:  

Let X and Y be any two sequence spaces. Let A = (       
 

     
   

 (1           be an infinite matrix of scalar entries. 

    (        )
 

   
       where    (x) = ∑      

 
    is a convergent sequence for each n   (n = 

1, 2, 3,…). We say that A defines a matrix map from X into Y and we write A           By (X, Y), 

we mean the class of matrices A such that A                            characterize the spaces 

(S  (p),   ). We   shall first establish the following simple lemma 1. 

Lemma (1): 

 Let X and Y be two sequence spaces, and let    {y ={   }:     (           Y,    = o}, then 

A         if and only                    
 

     
 =(        

 
     

 = B         With lemma1,. (i,  

ii ) in [10] or, Theorem 3 in [10] or, Theorem  5b (i) and Theorem7 in [24], a characterization of the 

classes (         ) or (               ((              )      ( q       immediately follows 

In [6] the authors have characterized the spaces (S  (p),    ) iff the matrix A satisfy following the 

conditions: 

Theorem3: 
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Let       for every k then, A   ( S  (p),    ) if 

(i)
    
 

  ∑     ∑       
     ]  

          . 

(ii)    
 

[∑       
     ∑    

 
              

Proof: We first prove that these conditions are necessary. 

Suppose that A      (p),  ). Since x= (  ) = ( ∑       
 ) 

belongs to    (p), the condition (i )holds. In order to see that (ii) is necessary we assume that  

for N>1, 

               [∑  
 

   
     ∑    

 
     ] =   

Let the matrix B be defined by 

                              B = (   ) = (∑    
 
     . 

Then it follows from Theorem 1.12.8 that B        (p),  ). Hence, there is a sequence  

x      (p) such that  

                             
   = 1 and ∑      

 
           

We now define the sequence y = (  ) by 

                                                      = ∑   
 
     (k       

                                                      = o. 

Then y ∈     (p) and  ∑      
 
      ∑      

 
            

This contradicts that A      (p),  ). Thus, (ii) is necessary. 

We now prove the sufficiency part of the theorem. 

Suppose that (i) and (ii) of the theorem hold. Then    ∈           for each n ∈     

Hence       = ∑      
 
    converges for each n ∈                 x      (p). Following the 

argument used in lemma 1, we find that if x      (p) such that             
   < N, then 

              ∑      
 
       ∑  

 

   
     ∑    

 
       

                                               [∑  
 

   
     ∑    

 
     ]; 

                                              

This proves that AX ∈    . Hence, the theorem is proved. 

Theorem (4): 

 Let      o, for every k, then A   (S       c ) if and only if 

(i)R   (       c) where R = (     ) = [ ∑      ]
 
     (n, k = 1, 2, 3,…). 

(ii) An [ ∑  
 

  
    i]      (n, k =1, 2, 3,…) for all integers, N     

(iii)                     ( k = 1, 2, 3,…). 

Proof: Let us first prove the sufficiency condition. For consider any x   S     , we choose N  
          suppk      

p
k     e write,  
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∑       
 
    = ∑        

 
    _ rn+1, m ∑    

 
        (m = 1, 2, 3,…).                                (2). 

By condition (ii) ∑     [
 
    ∑  

 

  
    i] is convergent for each (n = 1, 2, 3,…).Hence, by corollary 2 

in [20] it follows that 

             ∑  
 

  
     = o. By condition (i), R               and since x 

  S                                                    [ ]    [  ]                 

∑ |    | 
     

    is uniformly convergent in n and            exists for each (k = 1, 2, 3,…) 

Since ∑ |    |        ∑ |    |  
      

   
 
    from (2) we find that ∑       

 
    is absolutely and 

uniformly convergent in n. Finally, we have 

      ∑       
 
     ∑     

 
   . This proves the sufficiency condition. 

The necessities of (iii) and (ii) are respectively obtained by taking x = e = ( 1, 1, 1,…)   S          

x = [∑  
 

  
    i]    (k = 1, 2, 3,…),   i   S     .Now consider the necessity of (i).If it is not true, then 

there exists x = (  )         with suppv       = 1 such that     [∑        ]
         hough if we 

define a sequence y = (  ) by 

   =  ∑   
 
     ( v = 1, 2, 3,…), then y   S      but [∑       

 
    = ∑       

 
   ]   . This 

contradicts the fact that A   (S       c ) and therefore (i) must hold. 

Before characterizing the class (S       cs ), we add one more notation, for any  

n             

   (AX) = ∑       
 
   = ∑        

 
      [x         ],  whereB = (    ) = [ ∑     

 
    ] 

 (n = 1, 2, 3, …).This  complete the proof of the theorem. 

Theorem (5): 

 Let      o, for every k, then A   (S          ) if and only if 

(i)C   (          ) where C = (     ) = {∑ [∑   
     

 
    ]   (n, k = 1, 2, 3,…). 

(ii)    [ ∑  
 

  
   ]       (n, k =1, 2, 3,…) for all integers, N     

(iii)             =       ∑     
 
         ( k = 1, 2, 3,…). 

Proof: 

This theorem follows immediately from theorem (4); 

Let us first prove the sufficiency condition. For consider any x   S     , we choose N            

suppk      pk     e write,  

∑       
 
    = ∑        

 
    _   , m+1 ∑    

 
        (m = 1, 2, 3,…)  and the convergence of 

 ∑     [∑       
   

 
    ]    implies that  

               1∑       
     = 0. 

Characterization of             ) , q    follows from Theorem 5 (ii) [28] with lemma 1. 

This completes the proof of the theorem. 

CONCLUSION 
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The  results  obtained  in  this  research  paper are  very  closely  linked  with  the  summability  theory  

and  matrix  transformations.  So  the  practical  applications  of  this  research paper  have  the  same  

applicability applications  as  those  of  summability  theory  and  matrix  transformation between 

sequence spaces. 
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