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Abstract 

A one-dimensional steady state bio-heat transfer model of temperature distribution in cylindrical living tissue is discussed 
using numerical approximation technique the Galerkin Finite element method. 

we observe the effects of the thermal conductivity of the thermal system.The results show that the derived solution is useful to 
easily and accurately study the thermal behavior of the biological system, and can be extended to such applications as 
parameter measurement, temperature field reconstruction and clinical treatment.  
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1. Introduction 

The normal body core temperature is 370C. This body temperature is the result of equilibrium between 
heat production and heat loss. If the body temperature stretches so far from normal temperature, death 
will occur. The temperature nearly 270C and below and nearly 420C and above are critical, so the 
temperature of body should be maintained around 370C. The maintenance of body temperature is a 
dynamic system. If heat is greater than heat production then the body core temperature drops. Likewise 
if heat loss is less than heat production then the core temperature rises. So, the rise or drop in core 
temperature is equally dangerous, so body temperatures are kept constant[1,3,4,5]. 

In this paper, we study the effect of thermal parameters of dermal part in cylindrical living tissue. The 
linear function is considered. The outer surface of the body is exposed to the environment and the loss 
of heat from the skin surface is assumed due to convection and radiation. Here, we neglected the axial 
and angular direction and considered only the radial direction steady state model. The numerical 
result(Finite Galerkin Finite Element Method[8]) obtained is exhibited graphically by applying the 
suitable values of physical and physiological parameters. 

 

2. Model Formulation 

Mathematical model used for bio-heat transfer is based on Pennes’ equation[7]. The Pennes’ model is 
preferable for the study of heat transfer between blood and tissue which also associates the effect of 
metabolism and blood perfusion. The Pennes’ equation is written as;  

 
b b b a m

T
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where, T (0C) denotes the temperature of tissue element at any time t at a distance of x measured 
perpendicularly into the tissue element from the skin surface, and , c, k  are the density(Kg/m3), the 

specific heat(J/Kg.0C) and the thermal conductivity of tissue(W/m.0C) respectively. wb  is  the blood  
perfusion  rate  per  unit  volume(Kg/s.m3), cb  is  the  specific heat  of  blood(Kg/m3),  qm  is  
the  metabolic  heat  generation  per unit  volume(W/m3), Ta  represents  the  temperature  of  
arterial blood(0C) and T is  the  tissue  temperature(0C). 

The equation (1)in the cylindrical coordinate system is  

  a m2

T 1 T 1 T 1 T
c Kr K K M T T q

t r r r r r z zr

                                 
 (2) 

The one dimensional steady state bio heat equation of cylindrical living tissue reduces to  

 
a m

1 d dT
Kr M(T T) q 0

r dr dr
      
 

 (3) 

 

where boundary conditions are:  

 r=0, 

and  

  

where R is the radius of concerned tissue, hA is the coefficient of heat transfer, 

and T∞ is ambient temperature. 

3 . Galerkin Finite Element Method 

The Finite Element Method is a powerful numerical technique for solving the algebraic, differential, 
and integral equations.The finite element method provides an approximate solution. The domain of the 
physical problem is discretized into the finite elements. The elements are connected at points called 
nodes. The assemblage of elements is called finite element mesh. 

Several approaches can be used to transform the physical formulation of the problem to its finite 
element discrete analogue. Mostly, we have Galerkin weighted residue method and variational method. 
There may be other ways to apply the Galerkin method, and these would not necessarily be the same as 
a variational method. The variational method cannot always be applied because there may be no 
variational principle for the problem, but the Galerkin method is always applicable because it does not 
depend on the existence of a variational principle. 

In Galerkin approach we have the strong and weak formulation. Strong Form is the set of governing 
partial and ordinary differential equation with boundary condition’s are the strong form. The strong 
solution must satisfies the differential equation and boundary conditions exactly and must be as 
smooth(number of continuous derivatives) as required by the differential equation. If the system under 
analysis consists of varying geometry or material properties, then discontinuous functions will enter 
into the equations of motion and the issue of differentiability can become immediately apparent. To 
avoid such difficulties, we can change the strong form of the governing dynamics into a weak or 
weighted-integral formulation. Weak form is a variational statement of the problem in which we 
integrate against a test (weight) function.[8] 
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Using weak Formulation of Galerkin Finite Element Methods(FEM)[8] with ar 0  and br R  in the 

equation (3),  we get  

b

a

r

a m
r

1 d dT
w kr M (T T) q dr 0

r dr dr


          
(4)  

putting a kr  and Integrating equation (10) we get 

b

a

r

a m
r

d dT
w a Mwr(T T) q wr dr 0

dr dr

        
  

                                (5)                 

After simplified and using the trial function into equation(11) we get  

     e e e eK T f Q     (6)         

 where, 
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 Fig 1 Finite Element Discretisation Mesh. 
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From the equation(7) we find the element at ar 0,h,2h,...,nh and assembling the elements in the 

matrix form;  PX Q (8) where, 

1
1

1
2 1
1 22
3 23
1 2

n 1 n
2

Q
T 1a c 0 0

Q QT 6c 4b 3c 0

P ,X and Q NT 120 3c 8b 5c 0 Q Q
0 0

T v0 0 0 p
Q

 
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              
     
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



   




 

and  
2 2 2 2

2
1
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For the boundary condition of extreme points of each linear element 
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where, A n 1 Ap Rh T , Rh T      . 

4. Numerical Results and Discussion 

This section discusses the effects of thermal conductivity in living tissue using the Galerkin Finite 
element solution equation.These numerical results of these effects based on the discussed solution 

techniques, we consider the following parameter values[9] with normal ambient temperature(T∞) 250C 

and number of nodes 30.  

Table 1  Values of Parameters for Theoretical Analysis. 

 wb cb K hA qm Ta R 

Kg /s.m3 J/Kg.0 C W/ m.0 C W/ m2.0C W/m3 0C m 

 3 3850 0.48 10.023 1085 37 0.0285 

 

Effects of the Thermal Conductivity 

The various value of thermal conductivity of dermal part are taken as 0.24 W/m.0C, 0.48 W/m.0C and 
0.72 W/m.0C for the observation of the thermal conductivity effects in living tissue. Figure(1) represent 
the graph of thickness verses body temperature obtained by using  FEM solution. 
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Fig 2 Effects of the Thermal Conductivity. 

The observed results in Figure shows that the temperature distribution in living tissue is decreasing 
smoothly and then temperature falls sharply nearly the skin surface due to the conduction process at the 
outer surface of the living tissue. The value of temperature at any point of dermal part near core at high 
thermal conductivity is less than the temperature at low thermal conductivity. The results obtained from 
Figure exhibit approximately the same value of temperature distribution at a given thickness of dermal 
part measured from the body core.  

5. Conclusion 

In this study we use the different thermal parameters with their different values of thermal conductivity 
of the dermal part of living tissue. The effects of different thermal parameters are discussed by using 
Galerkins FEM solution method in the cylindrical bio-heat equation. The effects of  thermal 
conductivities have the significant and more remarkable effects in temperature variation in living tissue.  

The solution obtained can be used for the measurement of thermal parameters, reconstruction of the 
temperature field and thermal diagnosis and in the treatment that maximizes the therapeutic effect while 
minimizing unwanted side effect. It may also be useful to design medical devices to perform within a 
special range of temperature rate of heating and cooling. 
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