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Abstract 

In recent years, internet and computers have been utilized by many people all over the world in several fields. On the other hand, 
network intrusion and information safety problems are ramifications of using internet. In this thesis it propose a new learning 
methodology towards developing a novel intrusion detection system (IDS) by back propagation neural networks (BPN) and self 
organizing map (SOM) and compare the performance between them. The main function of Intrusion Detection System is to 
protect the resources from threats. It analyzes and predicts the behaviors of users, and then these behaviors will be considered an 
attack or a normal behavior. The proposed method can significantly reduce the training time required. Additionally, the training 
results are good. It provides a powerful tool to help supervisors and unsupervisors analyze, model and understand the complex 
attack behavior of electronic crime.  
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1. Introduction  

The problem of protecting information has existed since information has been managed. However, as 
technology advances and information management systems become more and more powerful, the 
problem of enforcing information security also becomes more critical. The enlargement of this electronic 
environment comes with a corresponding growth of electronic crime where the computer is used either as 
a tool to commit the crime or as a target of the crime [1]. 

In past years, numerous computers are hacked because they do not consider the necessary of precautions 
to protect against network attacks. The failure to secure their systems puts many companies and 
organizations at a much greater risk of loss. Usually, a single attack can cost millions of dollars in 
potential revenue. Moreover, that's just the beginning. The damages of attacks include not only loss of 
intellectual property and liability for compromised customer data (the time/money spent to recover from 
the attack) but also customer confidence and market advantage. There is a need to enhance the security of 
computers and networks for protecting the critical infrastructure from threats.  Accompanied by the rise of 
electronic crime, the design of safe-guarding information infrastructure such as the intrusion detection 
system (IDS) for preventing and detecting incidents becomes increasingly challenging. The intrusion 
detector learning task is to build a predictive model (i.e. a classifier) capable of distinguishing between 
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bad intrusions and normal connections. Recently, an increasing amount of research has been conducted on 
applying neural networks to detect intrusions. An artificial neural network consists of a collection of 
processing elements that are highly interconnected. Give a set of inputs and a set of desired outputs, the 
transformation from input to output is determined by the weights associated with the interconnections 
among processing elements. There are two general methods of detecting intrusions into computer and 
network systems, namely Anomaly detection and Signature recognition.  

Anomaly detection techniques establish a profile of the subject's normal behavior (norm profile), compare 
the observed behavior of the subject with its norm profile, and signal intrusions when the subject’s 
observed behavior differs significantly from its norm profile. Signature recognition techniques recognize 
signatures of known attacks, match the observed behavior with those known signatures, and signal 
intrusions when there is a match [2].  

Neural network is an universal classifier and with the proper choosing of its architecture it can solve any, 
even very complicated, classification task [3].  

 

 

Fig 1 Multilayer Perceptron[1] 

Here above figure 1.2 shows the input layer, hidden layer(s) and output layer of Multilayer Perceptron 
(MLP). 
Attacks can be gathered in four main categories: 

1) Denial of Service Attack (DoS): is an attack in which the attacker makes some computing or memory 
resource too busy or too full to handle legitimate requests, or denies legitimate users access to a machine. 
2) User to Root Attack (U2R): is a class of exploit in which the attacker starts out with access to a 
normal user account on the system (perhaps gained by sniffing passwords, a dictionary attack, or social 
engineering) and  is able to exploit some vulnerability to gain root access to the system. 

3) Remote to Local Attack (R2L): occurs when an attacker who has the ability to send packets to a 
machine over a network but who does not have an account on that machine exploits some vulnerability to 
gain local access as a user of that machine. 
4) Probing Attack: Attacker tries to gain information about the target host [2]. 
Activation Function: 

Multilayer perceptron networks typically use sigmoid transfer functions in the hidden layers. These 
functions are often called "squashing" functions, because they compress an infinite input range into a 
finite output range.  

The bipolar sigmoid function: f(x) = -1 + 2/ [1+e-x] 
which has derivative of: f’(x) = 0.5 * [1 + f(x)] * [1 – f(x) ] 
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Fig 2 Bipolar Sigmoid Function 

2. Literature Review 

At first the concept of intrusion detection system was suggested by Anderson (1980) [1]. He applied 
statistic method to analyze user’s behavior and to detect those attackers who accessed system in an illegal 
manner. In [2] proposed a prototype of IDES (intrusion detection expert system) in 1987, subsequently, 
the idea of intrusion detection system was known progressively, and paper was regarded as significant 
landmark in this area. In [4] the author proposed a data mining framework for constructing intrusion 
detection models. The key idea is to apply data mining programs namely, classification, meta-learning, 
association rules, and frequent episodes to audit data for computing misuse and anomaly detection models 
that accurately capture the actual behavior (i.e., patterns) of intrusions and normal activities. Although, 
proposed detection model can detect a high percentage of old and new PROBING and U2R attacks, it 
missed a large number of new DOS and R2L attacks. Reference [5] is mostly focused on data mining 
techniques that are being used for such purposes, and then presented a new idea on how data mining can 
aid IDSs by utilizing biclustering as a tool to analyze network traffic and enhance IDSs. Reference [6] 
proposed a new weighted support vector clustering algorithm and applied it to the anomaly detection 
problem. Experimental results show that mentioned method achieves high detection rate with low false 
alarm rate. Intrusion detection attacks are segmented into two groups,  

• Host-based attacks [3-5] and  

• Network-based attacks [6, 7].   

Intruders attack these systems by transmitting huge amounts of network traffic, utilizing familiar faults in 
networking services, overloading network hosts, etc. Detection of these kinds of attacks uses network 
traffic data (i.e., tcpdump) to look at traffic addressed to the machines being monitored.  

3. Research Methodology 

 Back Propagation Algorithm 

The back propagation algorithm is a quite essential one of the neural network. The algorithm is the 
training or learning algorithm rather than the network itself. The network used is generally of the simple 
type shown in figure 3.1, and in the examples up until now. The network operates in exactly the same way 
as the others have seen. Now, let’s consider what Back Propagation is and how to use it. A Back 
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topology, or the structure, of the map. Adjacent neurons belong to the neighborhood Ni of the neuron i. In 
the SOM algorithm, the topology and the number of neurons remain fixed from the beginning. The 
number of neurons determines the granularity of the mapping, which has an effect on the accuracy and 
generalization of the SOM. During the training phase, the SOM forms elastic net that is formed by input 
data. The algorithm controls the net so that it strives to approximate the density of the data. The reference 
vectors in the codebook drift to the areas where the density of the input data is high. Eventually, only few 
codebook vectors lie in areas where the input data is sparse.  The learning process of the SOM goes as 
follows:  

1.  One sample vector x is randomly drawn from the input data set and its similarity (distance) to the 
codebook vectors is computed by using Euclidean distance measure:   

 

‖ ‖ ‖ ‖ ………………………… . . 3.2  

2.  After the BMU has been found, the codebook vectors are updated. The BMU itself as well as its 
topological neighbors are moved closer to the input vector in the input space i.e. the input vector 
attracts them. The magnitude of the attraction is governed by the learning rate. As the learning 
proceeds and new input vectors are given to the map, the learning rate gradually decreases to zero 
according to the specified learning rate function type. Along with the Intrusion Detection System, 
Using Self Organizing Map learning rate, the neighborhood radius decreases as well. The update 
rule for the reference vector of unit i is the following:  

1 , ∈  

1 , ∈ …………………………… . 3.3  

3.  The steps 1 and 2 together constitute a single training step and they are repeated until the training 
ends. The number of training steps must be fixed prior to training the SOM because the rate of 
convergence in the neighborhood function and the learning rate are calculated accordingly.   

Mapping Precision 

The mapping precision measure describes how accurately the neurons respond to the given data set. If the 
reference vector of the BMU calculated for a given testing vector xi is exactly the same xi, the error in 
precision is then 0. Normally, the number of data vectors exceeds the number of neurons and the 
precision error is thus always different from 0. A common measure that calculates the precision of the 
mapping is the average quantization error over the entire data set:  

1
‖ ‖………………………………………… . . 3.4  

Topology Preservation 

 The topology preservation measure describes how well the SOM preserves the topology of the studied 
data set. Unlike the mapping precision measure, it considers the structure of the map. For a strangely 
twisted map, the topographic error is big even if the mapping precision error is small. A simple method 
for calculating the topographic error:   
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Where u(xx) is 1 if the first and second BMUs of xkare not next to each other. Otherwise u(xk) is 0. 

SOM Implementation to Intrusion Detection System 

The goal of the proposed architecture is to investigate effectiveness of application a neural network SOM 
figure.3.5 at modeling user behavioral patterns so they can distinguish between normal and abnormal 
behavior. In order to model user behavior identified and isolated the system logs that were required as 
sources of information for the networks. These logs being common log data provided the required user 
activity information from where system derived the following behavioral characteristics which typifies 
users on the system:  

 User activity times - The time at which a user is normally active.  

 User login hosts - The set of hosts from which a user normally logs in from.  

 User foreign hosts - The set of hosts which a user normally accesses via commands on the 
system (FTP hosts).  

 Command set - The set of commands which a user normally uses.  

 CPU usage - The typical CPU usage patterns of a user.  

 Memory usage – The typical usage of memory for a user.  

 

Fig 3.4 Structure of an Automated User Behavior Anomaly Detection System 

Figure 3.5 illustrates how a complete system for the detection of user behavioral anomalies is structured.  
The coordination process is responsible for channeling system information to the neural networks. Each 
of the behavioral characteristics are both modeled by a SOM network, as well as checked by a limited 
static rule filter for easy breaches of security.  Data acquired from the system logs is required to filter 
through input data preprocessor. The input to the neural network Fig. 3.5 represents data vector consisting 
from data controlled on the monitored system. Before input vector processing it is needed to normalize 
input data. The input to neural network is data vector, which consists from six properties representing 
User activity times, User login hosts, User foreign hosts, Command set CPU usage and Memory Usage. 
According to large numbers of variations of this data it is necessary to normalize every input vector to be 
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value in range of values [-1, 1]. This range comes out from the previous applications of neural network to 
system IDS realized within research activity on the Department of Computers and Informatics in Kosice. 
This normalization is more suitable for implementation in proposed SOM network. The architecture uses 
normalization given by:     

∑
…………………………………………… . . 3.6  

Where nv[i] is the normalized value of feature (i), v[i] is the feature value of i, and K is the number of 
features in a vector. The processing realized by the SOM network consequently produces results for every 
user characteristic gives as input to the SOM network. Expected network reply is the value close to-for 
user, which behavior does not divert from normal behavior. If the value for given user exceeds specified 
threshold value obtained through the SOM network representing its intrusion behavior denotes raising 
alarm. If the output value of network is above specified threshold value, alarm is raised. It is necessary to 
remark that basic request for this detection mechanism is to setup threshold value to specific system 
whereby make it possible to adapt sensitivity directly to computer system.     

4. Data Analysis  

Input Dataset Analysis 

Under the sponsorship of Defense Advanced Research Projects Agency (DARPA) and Air Force 
Research Laboratory (AFRL), the MIT Lincoln laboratory has established a network and captured the 
packets of different attack types and distributed the data sets for the evaluation of researches in computer 
network intrusion detection systems. The KDDCup99 data set is a subset of the DARPA benchmark data 
set [9]. Each KDDCup99 training connection record contains 41 features and is labeled as either normal 
or an attack, with exactly one specific attack type. This dataset will be taken as training data for 
performing the proposed research work. The result thus obtained will be compared with the rest of test 
data set. One of the reasons for choosing this data set is that the data set is standard. Another reason is that 
it is difficult to get another data set which contains so rich a variety of attacks. 

Feature Extraction: For each network connection in the data set, the following three key groups of 
features for detecting intrusions will be extracted. 

 Basic features: This group summarizes all the features that can be extracted from a TCP/IP 
connection. Some of the basic features in the KDDCup99 data sets are protocol type, service, 
src_bytes and dst_bytes. 

 Content features: These features are purely based on the contents in the data portion of the data 
packet. 

 Traffic features: This group comprises features that are computed with respect to a 2 Sec. time 
window and it is divided into two groups: same host features and same service features. Some of 
the traffic features are counted, rerror_rate, rerror_rate and srv_serror_rate. 

Instance Labeling:  After extracting KDDCup99 features from each record, the instances are labeled 
based on the characteristics of traffic as Normal, Dos, Probe, R2L and U2R. 
 Pre Processing 

The data set will be preprocessed so that it may be able to give it as an input to our proposed system. This 
data set consists of numeric and symbolic features and will be converted in numeric form so that it can be 
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given as inputs to our MLP network. Now this modified data set will be used as training and testing of the 
multi layer perceptron. Table 4.1 below shows the feature columns name and type of 10% KDDCup 99 
dataset.Table 0.1:KDD feature columns name and type [9] 

The following tables represent the data feature columns before and after transformation. 

Table 1Feature Column Before Transformation 

 

Table 2 Feature Column  After Transformation 

0,1,20,10,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8, 

,0.00,0.00,0.00,0.00,1.00,0.00,0.00,9,9,1.00,0.00,0.11, 

0.00,0.00,0.00,0.00,0.00,1,0,0,0,0. 

 

Training and Testing of MLP 

The input dataset is divided into 3 subsets. The first subset is the training set, which is used for computing 
the gradient and updating the network weights and biases. The second subset is the validation set. The 
error on the validation set is monitored during the training process. The validation error normally 
decreases during the initial phase of training, as does the training set error. However, when the network 
begins to over-fit the data, the error on the validation set typically begins to rise. When the validation 
error increases for a specified number of iterations (net.trainParam.max_fail), the training is stopped, and 
the weights and biases at the minimum of the validation error are returned. The test set error is not used 
during training, but it is used to compare different models (MathWorks Matlab Help, 2013). 

In this thesis, 80% data from the input dataset are used for training, 10% for validation and 10% for 
testing of the MLP to analyze the performance of various back propagation algorithms.  

5. Performance Parameters 

Mean Square Error, Total CPU Time of Converge and Accuracy will be the performance parameters to 
compare various back propagation algorithms. 

Following parameters will be calculated while training and testing of MLP.   

 True Positive (TP): Situation in which a signature is fired properly when an attack is detected 
and an alarm is generated. 

 False Positive (FP): Situation in which normal traffic causes the signature to raise an alarm. 

 True Negative (TN): Situation in which normal traffic does not cause the signature to raise an 
alarm. 

 False Negative (FN): Situation in which a signature is not fired when an attack is detected. 

 Attack Detection Rate (ADR): The detection rate is defined as the number of intrusion instances 
detected by the system (True Positive) divided by the total number of intrusion instances present 
in the test set. 

0,tcp,http,SF,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,1.00,0.00,0.00,9,9,1.00,0.00,
0.11,0.00,0.00,0.00,0.00,0.00,normal. 
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Attack Detection Rate (ADR) = (Total detected attacks / Total attacks) * 100 % 

 False Alarm Rate (FAR): It is the ratio between the total number of misclassified instances and 
the total number of normal connections present in the data set. 
False Alarm Rate (FAR) = (Total misclassified instances / Total normal instances) * 100 % 

 Recall Rate: Recall rate measures the proportion of actual positives which are correctly 
identified. 

Recall Rate = TP/ (TP + FN)  

 Precision Rate: Precision rate is the ratio of true positives to combined true and false positives. 

Precision Rate = TP/ (TP + FP)  

6. Simulation Result 

6.1  Determining Hidden Layer Neurons in Scale Conjugate Gradient (SCG): 

The Multilayer Perception is trained to find the number of hidden layer neurons using the following 
parameters: 

Number of input data = 494021  

Number of input layer neurons = 41 

Number of output layer neurons = 5  

Change in weight for second derivative approximation (σ) = 5.0e-5 

Parameter for regulating the indefiniteness of the Hessian(λ)=5.0e-7 

 

Fig 6.1 MLP Architecture of Back Propagation of 20 hidden neuron layer. 

 

Fig 6.2 Performance of MLP with 5 neurons in hidden layer. 

6.2  Performance Assessment of Scale Conjugate Gradient (SCG) Back Propagation Algorithms 

Simulation is done to analyze the performance of Scaled Conjugate Gradient.The Multilayer Perceptron 
was trained with SCG algorithm by using following parameters. 
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Change in weight for second derivative approximation (σ) = 5.0e-5 

Parameter for regulating the indefiniteness of the Hessian (λ) = 5.0e-7 

 

Fig. 6.3 Performance of SCG Algorithm 

Table 6.1 Evaluation Results for each Attack Classes (SCG) 

Attack TP FP FN Recall Precision 

DoS 391407 35 42 99.99% 99.99% 

U2R 0 0 32 0% 0% 

R2L 915 106 189 82.88% 89.61% 

Probe 3898 30 200 95.12% 99.23% 

Total 396220 171 463 98.88% 99.95% 

 

6.3   Determining Hidden Layer Neurons in Self Organizing Map 

The Multilayer Perception is trained to find the number of hidden layer neurons using the following 
parameters: 

Number of input data = 14020  

Number of input layer neurons = 41 

Number of output layer neurons = 5 and 10 

Simulation is done to analyze the performance of Self Organizing Map in terms of different number of 
hidden layer, epoch and iteration time required. 

 

 

Fig 6.4 SOM Network of 10 hidden neuron layer 
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Fig 6.5 Performance of SOM with 5 neurons in hidden layer. 

7. Conclusion 

At present, security inside the network communication is of a major concern. Intrusion detection system 
tries to identify security attacks of intruders by investigating several data records observed in processes on 
the network. From simulation result using Matlab tool and java programming code we suggest that the 
performance like iteration completion time of SOM (Self Organizing Map is far better than BP (Back 
Propagation) algorithm. 
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