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Abstract 

Single image super-resolution (SISR) is a technique that reconstructs high resolution image from single low resolution 
image. Dynamic Convolutional Neural Network (DCNN) is used here for the reconstruction of high resolution image from 
single low resolution image. It takes low resolution image as input and produce high resolution image as output for dynamic 
up-scaling factor 2, 3, and 4. The dynamic convolutional neural network directly learns an end-to-end mapping between low 
resolution and high resolution images. The CNN trained simultaneously with images up-scaled by factors 2, 3, and 4 to make 
it dynamic. The system is then tested for the input images with up-scaling factors 2, 3 and 4. The dynamically trained CNN 
performs well for all three up-scaling factors. The performance of network is measured by PSNR, WPSNR, SSIM, MSSSIM, 
and also by perceptual. 
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1. Introduction 

The generation of high resolution image from the low resolution image is referred as image Super-
Resolution (SR). High resolution image contains large number of pixel density carrying more details 
of real scene, which is very important in image processing and analysis. The application of high 
resolution image is common in computer vision in pattern recognition and image analysis. It is also 
very important in biomedical imaging for diagnosis, analysis of satellite imaging, and in image 
processing. In many application such as surveillance, forensic and satellite imaging, the specific area 
of image is need to be zoomed for further analysis, at that time the high resolution has great 
importance. Single image super-resolution (SR) [1], which creates a high-resolution image from a 
single low-resolution image has a traditional. This problem is inherently ill-posed since a number of 
similar high resolution pixels exist for any given low-resolution pixel. This problem is reduced by 
constraining the solution space using strong prior information. According to the image priors, single 
image super resolution can be classified into four types, they are prediction model, edge based 
methods, image statistical methods, and patch based methods which are thoroughly examined byYang 
et. al. [2] and found the patch based methods perform better among others. These four methods either 
reduce the internal similarities of the same image pixel or learn mapping functions from external low 
and high-resolution exemplar pairs [3, 4]. 

2. Literature Review 

Deep Learning for Image Super-Resolution 

Dong et al. [5], demonstrated a deep learning method for single image super-resolution (SISR), which 
directly learns an end-to-end mapping between the low resolution and high-resolution images. The 
end-to-end mapping is represented as a deep convolutional neural network (CNN) which takes the 
low-resolution image as the input and produce a high-resolution image as output. It further shows that 
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conventional sparse-coding-based super-resolution method can also be viewed as a deep 
convolutional network. But unlike traditional methods that handle each component separately.  

Single Image Super-Resolution 

Glasner et al. [1], is a unified framework which combined both classical multi-image super-resolution 
and example-based super-resolution. In classical multi-image super-resolution, low resolution image 
is considered from resampling of high resolution image, so the combination of low resolution 
sequence images generates high resolution image. It further showed how this combined approach can 
be applied to obtain super resolution from a single image (with no database or prior examples). 
Glanser et.al. approach is based on the observation that patches in a natural image which tends to 
recur redundantly many times inside the image, both within the same scale, or in different scales. 
Recurrence of patches within the same image scale gives rise to the classical super-resolution, 
whereas recurrence of patches across different scales of the same image gives rise to example-based 
super-resolution. 

3. Related Theory 

Super-resolution is a set of image processing techniques that generates a high-resolution image from 
multiple low-resolution images or from single low resolution image. A high-resolution image 
retrieves image details which is not visible in any single low-resolution image. 

There are some unavoidable errors occur when an optical image is converted into a digital image, due 
to conversion of a continuously varying light intensity into a set of pixels each measuring the average 
amount of light on the small area of each pixel. The reproduction of those digital image are excellent 
whose optical intensity varies slowly, but the reproduction of those images which contain high 
frequency feature like edges, corners, zigzags are altered due to aliasing effect. Aliasing effect is the 
folding or overlapping of high-resolution image information back onto the low-resolution 
information. It is useful to think the resolution of image in terms of a spatial frequency, which is the 
number of lines per inch. If we want to record a digital image containing information of a particular 
spatial frequency the pixels size should be less than half the spatial wavelength of that information. 
One thousand lines per inch resolution would require pixels less than 0.0005 inches wide, which is 
called the Nyquist condition. 

Convolutional Neural Network 

The convolutional layer receives a single input, the feature maps from the previous layer. The layer 
computes feature maps as its output by convolving filters across the feature maps from the previous 
layer. These filters are the parameters of the convolutional layer and are learned during training by 
using back-propagation. During testing, they are held fixed and do not change from one sample to 
another. 

Forward Pass: The learning of network is usually done in batches of T sample. It shall denote by ���,
the ith input feature map of sample t and by ��� the jth output feature map of sample t. The filters would 
be denoted by ���. In the forward pass of the convolutional layer, the output feature maps are 
calculated using the convolutional operator (denoted by *): 

��� = ���� ∗ ��� (1)
�

Backward Pass: during the backward pass, the convolution layer computes the gradient of the 
network’s loss function � with respect to ���:
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����

= �� ������
�

�
∗ ����� (2) 

Where, ∗ represents the convolution with zero padding. It uses back-propagation algorithm, so the 

values of the gradient ��
����

are passed to the previous layer which computed ���. Additionally, the 

gradient of the loss function with respect to ��� is computed: 

��
���� =

1
��� ������

� ∗
�

������ (3) 

Where ���� is the row/column flipped version of ���. After computing ��
����, the parameters ��� of the 

layer are updated by using gradient descent: 

��� = ���− ∝. ������ (4) 

Where, ∝ is the learning rate. 

Dynamic Convolutional Neural Network 

In contrast to the convolutional layer, the dynamic convolution layer [8] receives two inputs. The first 
input is the feature map from the previous layer and the second is the filters. The feature maps are 
obtained from the input by following a sub-network A. The filters are the result of applying a separate 
convolutional sub-network B on the input. The output of the layer is computed by convolving the 
filters across the features maps from the previous layer in the same way as in the convolution layer 
but here the filters are a function of the input and therefore vary from one sample to other. The whole 
system is a directed acyclic graph of layers and therefore the training is done by using the back-
propagation algorithm. 

Forward Pass: During the forward pass, the two networks compute separately. Network A computes 
the feature maps from the input image which is given to the dynamic convolution network as first 
input and the separate sub convolution network B computes the filter that will be given to the dynamic 
convolution network as the second input as shown in Fig 1. The output feature maps are calculated as 
follows: 

��� = ����� ∗ ��� (5)
�

Notice that in contrast to the conventional convolution layer, in the dynamic convolution layer every 
sample has a different kernel ���� .

Backward Pass:In the backward pass, the dynamic convolution layer computes the gradient of the 
loss function � with respect to ��� similarly to before: 

��
����

= �� ������
�

�
∗ ����� � (6)���������������� 

The values of the gradient ������
are passed to the layer in network A that produces ���. Additionally, and 

similarly to the conventional convolutional layer, the gradient of the loss function with respect to ����
is computed: 
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��
�����

= 1
��� ������

� ∗
�

������ (7) 

In contrast to the convolution layer, ���� are not parameters of the layer, they are a function of the input 

t that are passed from a previous layer in network B. Therefore, the values of the gradient  ��
�����

are 

passed to the layer that computed ���� as part of the back-propagation algorithm. 

4. Methodology 

Fig 2, shows the purposed system block diagram of Dynamic Convolutional Neural Network (DCNN) 
for Image Super resolution. The filter generating network [9] determines the size of filter used in 
convolutional neural network based on the input image. Thus the CNN used here makes adaptive 
depending upon the input images. CNN is used to generate high-resolution image from the single low-
resolution image. 

Patch Extraction and Representation 

A popular strategy in image restoration is to densely extract patches and then represent them by a set 
of pre-trained bases such as PCA, DCT, Haar, etc. This is equivalent to convolving the image by a set 
of filters. The first layer of Convolutional Neural Networkis expressed as an operation F1:

��(�) = max�(0,�� ∗ � + ��) (8) 

Where W1 and B1 represent the filters and biases respectively, and ‘*’ denotes the convolution 
operation. 

Non-Linear Mapping 

The first layer extracts an n1-dimensional feature maps for an input imageand each of these n1-
dimensional feature maps mapped into an n2-dimensional one in second layer. This is equivalent to 
applying n2 filters which have a trivial spatial support 1 by 1 filters. It is easy to generalize to larger 
filter sizes like 3 by 3 or 5 by 5. In that case, the non-linear mapping is on a 3 by 3 or 5 by 5 patch of 
the feature map rather than on a patch of the input image. The operation of the second layer is: 

��(�) = max�(0,�� ∗ � + ��) (9) 

Here,�� contains n2 filters of size n1 x f2 x f2, and �� is n2-dimensional. 
 

Filters 

 

Input        Layer K       Convolution Operator       Layer K+1 

Fig 1 Dynamic Convolutional Layer 

 

*

Sub-Network B 

Sub-Network A 
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Fig 2 Dynamic Convolutional Neural Network for Image Super-Resolution Block Diagram 

Reconstruction 

During reconstruction, the overlapping high-resolution patches that are predicted from the low 
resolution input image are averaged to produce the final full image. The averaging can be considered 
as a pre-defined filter on a set of feature maps (where each position is the flattened vector form of a 
high resolution patch). This motivated to define a convolutional layer to produce the final high 
resolution image. 

�(�) = �� ∗ ��(�) + �� (10) 

Here, �� corresponds to c filters of a size n2 x f3 x f3, and �� is a c-dimensional vector. If the 
representation of the high resolution patches are in the image domain, then the filter act like an 
averaging filter. 

5. Experiment and Results 

A. Training of Network 

The training data sets used in convolutional neural network is data sets of 91 images, each images 
then sub-sampled into sub-images of size 33 by 33, which produces around 24800 sub-images. The 
network is trained for the up-scaling factor of 2, 3 and 4. For the analysis of effects of large training 
data sets over limited data sets, the network has been trained with large ImageNet data. There was 
around 0.39 million images in ImageNet which has been further decomposed around 5 million sub-
images. 

To synthesize the low resolution samples, the sub images are blur by a Gaussian Kernel, sub sample it 
by the up-scaling factor, and up-scaled it by same factor via bicubic interpolation. The output images 

Low-resolution 
image (input) 

n1 feature maps of 
low-resolution image 

n2 feature maps of 
high-resolution image 

High-resolution 
image (output) 

Patch extraction and 
representation 

Non-linear mapping Reconstruction 

Filter Generating 
Network 
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are quite smaller due to avoiding the border pixels during training, whereas the border pixels are 
padded with zero during testing that makes the same image size with input. 

The initial filter weights are chosen randomly from a Gaussian distribution with zero mean and 
standard deviation 0.001 and the biases are set 0. The learning rate is different for different layer; it is 
0.0001 for the first two layers and 0.00001 for the last layer. The smaller learning rate in the last layer 
helps the network to converge. 

B. Testing of Network 

After successfully trained the network, the weights of filters and biases of first layer, second layer and 
third layer network are fixed. These parameters are extracted and used during the image super-
resolution. In the static CNN, the network is trained separately for different up-scaling factor and 
separate network is used during image super-resolution. But the network is modified to cope with 
multiple up-scaling factors (2, 3, and 4) and is trained simultaneously with these up-scaling factors, so 
that a common parameters are extracted which is used during image super-resolution. The trained 
network is tested using dataset5 (5 pictures) and dataset14 (14 pictures). 

C. CNN over Bicubic 

Table 1 shows the quantitative measurement of bicubic interpolated image and CNN reconstructed 
image with the ground truth image. It can be seen that the CNN reconstructed image has better quality 
than bicubic interpolated image for all up-scaling factor 2, 3 and 4. As the number of up-scaling factor 
increases, the quality of reconstruction decreases. Table 1 shows, CNN reconstructed image has 2.997 
dB higher PSNR, 9.262 dB higher WPSNR, 0.0243 dB higher SSIM, and 0.0031 dB higher MSSSIM 
than bicubic interpolation for up-scaling 2. Similarly, the CNN reconstructed image showed better 
quality than bicubic interpolation for up-scaling 3, and 4 as well. The quality of images seen degraded 
as the up-scaling factor increases; this is because large number of high resolution pixels has to be 
predicted from few number of input image pixels. 

D. CNN on Different Color Model 

The images in different color model are tested. The results obtained from Ycbcr, HSV and RGB color 
model is shown in Table 2. The network exhibited a bit better in Ycbcr model than HSV and RGB, 
since the network is trained by Ycbcr model. The CNN reconstructed image of butterfly has PSNR 
6.551 dB higher than HSV and 4.423 dB higher than RGB color space, similarly we can see in all 
other measurement indices, the value obtained from the Ycbcr color model has higher than that of 
HSV and RGB color model. Fig 3 is the output obtained in RGB color model, whereas the Fig 4 
represents the output in Ycbcr color model. 

Fig 3.1 Reconstruction on RGB Color Model          Fig 3.2 Reconstruction in Ycbcr Model 
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Courtesy: Dong et.al. Fig 3.3 Output of DCNN  

E. Static CNN vs Dynamic CNN 

In the conventional CNN, the network is trained separately for separate up-scaling factor (x2, x3, x4)
and parameters for each up-scaling factor is separate. During the testing particular parameters has to 
be used to get better result. But the network is modified to cope with dynamic up-scaling factor (x2,
x3, x4) and network is trained with multiple up-scaled training data to get a common parameters for 
these three up-scaling factor. Once the network is trained it works finely in all three up-scaling 
factors. Table 3 demonstrates the PSNR and SSIM value of output generated by static CNN and 
dynamic CNN.  

The results in Table 3 are compared for the training and testing of network by different up-scaling 
factors.  The performance of static CNN found better when the training and testing up-scaling factor 
matched and degraded the results when the up-scaling factor between training and testing is 
mismatched. But the dynamic network is trained by the multiple up-scaling factor simultaneously 
gives the satisfactory result in all three up-scaling factors. The performance of DCNN for a particular 
up-scaling factor is closed to the performance of static CNN for the same training and testing up-
scaling factor but far better than static CNN in different training and testing up-scaling. 

The bold values in static CNN show the better result when network is matchedfor up-scaling factor, 
for example, network trained by up-scaling factor 2 is tested by image up-scaled by 2. 

From the Table 3, the PSNR and SSIM value for the static CNN trained and test by same up-scaling 
factor has higher than that of all, but the value degraded drastically for the mismatch between training 
and testing up-scale factor. Unlike in static CNN, the dynamic CNN performs well in all three up-
scaling factors. The PSNR for testing up-scale 2 of static CNN trained by up-scale 2 has 36.659 dB 
whereas the DCNN has 36.344 dB. When the testing up-scale factor is 2, the PSNR of static CNN 
dropped to 29.435 dB but the DCNN has 32.394 dB, similarly for up-scale factor 4, PSNR of static 
CNN further dropped to 25.267 dB whereas the DCNN drop few and becomes 30.086 dB. The output 
result is shown in Fig 5. 
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Table 1 Image super-resolution using CNN and Bicubic Interpolation on Set 5 dataset 

Input Images Up-

scale 

PSNR (dB) WPSNR (dB) SSIM (dB) MSSSIM (dB) 

Bicubic CNN Bicubic CNN Bicubic CNN Bicubic CNN 

baby 2 37.066 38.537 53.512 61.812 0.9514 0.9651 0.9958 0.9979 

Bird 2 36.808 40.915 51.016 61.142 0.9720 0.9859 0.9974 0.9991 

butterfly 2 27.434 32.753 43.714 54.744 0.916 0.9652 0.9932 0.9980 

Head 2 34.858 35.723 54.383 61.597 0.862 0.8862 0.9891 0.9932 

Woman 2 32.145 35.365 48.002 57.642 0.9478 0.9686 0.9952 0.9981 

average 2 33.662 36.659 50.125 59.387 0.9299 0.9542 0.9942 0.9973 

baby 3 33.911 35.250 44.975 49.408 0.9030 0.9233 0.9832 0.9889 

Bird 3 32.576 35.475 42.509 47.704 0.9257 0.9550 0.9856 0.9931 

butterfly 3 24.038 27.953 35.252 41.838 0.8241 0.9121 0.9724 0.9898 

Head 3 32.880 33.712 46.171 50.192 0.7991 0.8267 0.9709 0.9786 

Woman 3 28.564 31.371 39.354 45.603 0.891 0.9297 0.9797 0.9901 

average 3 30.394 32.752 41.652 46.949 0.8686 0.9094 0.9784 0.9881 

baby 4 31.777 33.126 40.253 43.292 0.8556 0.8815 0.9691 0.9793 

Bird 4 30.180 32.520 38.032 41.645 0.8737 0.9115 0.9715 0.9843 

butterfly 4 22.099 25.459 30.921 36.200 0.7407 0.8620 0.9501 0.9808 

Head 4 31.590 32.444 42.009 44.641 0.7513 0.7784 0.9559 0.9666 

Woman 4 26.464 28.895 34.890 39.124 0.8350 0.8868 0.9623 0.9798 

average 4 28.422 30.489 37.221 40.981 0.8113 0.8641 0.9618 0.9782 
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Table 2 Image Super Resolution on Different Color Spaces 

The bold values represent the better results in Ycbcr color model among three other color models. 

Table 3 Result of static CNN and dynamic CNN for up-scaling factor 2, 3 and 4 

 

6. Conclusion 
We designed a convolutional neural network to cope with dynamic range of up-scaling factors, and 
named the system dynamic convolutional neural network (dynamic CNN), the performance of 
dynamic CNN is close to the static CNN tested for same training up-scale, but improves quality of 
super-resolution than that of static CNN implemented in mismatched training and testing up-scale. 
This algorithm provides solution to arduous task in designing separate convolutional neural network 
for different up-scaling factors. 

Input Images Up-scale Measurement 
Ycbcr HSV RGB 

Bicubic CNN Bicubic CNN Bicubic CNN 

Butterfly 3 

PSNR (dB) 24.038 32.753 22.768 26.202 24.038 28.330

WPSNR (dB) 35.252 41.838 - - 34.153 41.057

SSIM (dB) 0.8241 0.9121 0.8282 0.9109 0.8282 0.9110

MSSSIM (dB) 0.9724 0.9898 0.9741 0.9900 - -

Woman 

 
3

PSNR (dB) 28.564 31.371 27.216 30.077 28.563 31.311

WPSNR (dB) 39.354 45.603 - - 38.043 44.110

SSIM (dB) 0.891 0.9297 0.8748 0.9158 0.8748 0.9158

MSSSIM (dB) 0.9797 0.9901 0.9765 0.9880 - -

Test/ 

Train 

Static CNN x2 Static CNN x3 Static CNN x4 DCNN x2,3,4 

PSNR 
(dB) 

SSIM 
(dB) 

PSNR 
(dB) 

SSIM 
(dB) 

PSNR 
(dB) 

SSIM 
(dB) 

PSNR 
(dB) 

SSIM 
(dB) 

x2 36.659 0.954 30.575 0.874 28.442 0.813 36.344 0.952 

x3 29.435 0.884 32.752 0.909 29.002 0.830 32.394 0.904 

x4 25.267 0.766 28.722 0.847 30.489 0.8641 30.086 0.854 
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