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Abstract

Electroencephalogram (EEG) signal is short-length time series data. Parametric and non-parametric methods are used to
estimate the power spectral density (PSD) of the time series data. While the non-parametric approach of spectrum estimate of
short-length data is unreliable, the parametric approach of spectrum estimate is widely suggested. In the presented work, a
parametric autoregressive moving average with exogenous input (ARMAX) model was implemented to find the PSD of the
EEG signal. The performance of the implemented ARMAX model was contrasted with other parametric methods like
autoregressive (AR) and autoregressive moving average (ARMA) and nonparametric methods like periodogram.

Coefficients of ARMAX and (ARMA) were estimated using the particle swarm optimization (PSO) technique based on swarm
intelligence. The PSO algorithm adapted with the system identification technique and statistics yielded highly satisfactory
results in finding the coefficients of the ARMAX model. All the programming and visualization were performed in a MATLAB
environment.

Keywords: Electroencephalogram (EEG), ARMAX, ARMA, spectral estimation, Particle Swarm Optimization.
1. Introduction

Electroencephalograph records the electrical activity taken from the human scalp (using sensors of
a special type) over a period [1]. From the signal-processing point of view, EEG is a spatial non-
stationary stochastic time-series process [2]. EEG waveforms would disclose information about certain
changes due to drugs, emotions, thoughts, and diseases. Measurements of these changes available in
EEG waveforms in real-time may be used to determine the status and conditions of the subject [3].

Spectral analysis is one of the techniques which aims at analyzing the spectral power in different
frequency bands known as the power spectral density (PSD). Knowledge of Power Spectral Density
(PSD) in the signal is useful in various situations e.g., detection of a signal masked in wideband noise
[4]. Spectral analysis of stochastic signal is performed using either a parametric (model-based) or
nonparametric (Fourier transform-based) approach.

This research tests the suitability of a parametric model known as the autoregressive moving average
with exogenous input (ARMAX) for a spectral estimate of the EEG signal. To perform this estimation,
the coefficients of the ARMAX model needed to be estimated. For this purpose, we propose employing
an innovative approach, the Particle Swarm Optimization (PSO) technique. PSO is one of the stochastic
optimization techniques. PSO is based on the social and personal behavior of a swarm. The proposed
ARMAX model is compared with another parametric model autoregressive moving average (ARMA)
and nonparametric approach periodogram.

2. Literature Review

Spectral analysis of the time series signal could be represented in the frequency (spectral) domain using
finite Fourier transform (FFT) [5]. The EEG signal is short in length. Short Time Fourier Transform
Method (Spectrogram Method) is a traditional approach to computing the spectrum of the short-length
signal [6]. As the EEG signal is a non-stationary stochastic signal, the spectrogram “has a serious
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drawback, which is the implicit assumption of stationary within each segment and unsatisfactory
time/frequency resolution” [7].

Instead of a direct Fourier Transform based approach, a periodogram, which is based on the square of
the Fourier Transform has been suggested to estimate the PSD of a signal [8][9]. Spectral estimates
obtained using estimators like periodograms are not equal to the true spectrum of a signal. However,
they resemble the true spectrum. Since the research is concerned with obtaining clear information on
power distribution along the frequency domain an estimator that gives a high spectral resolution is
considered better than the estimator with a low spectral resolution. Periodograms are indeed the simplest
type of nonparametric approach to estimate PSD. The other type is the parametric approach which relies
on the model assumed for the signal generation [9]. The periodogram suffers from very high variance
and is not a good estimator. Welch modified it by averaging the waveform to reduce variance [10]. The
Blackman-Tukey method of periodogram smoothing [11] is another alternative Welch method.
Nonparametric methods like periodogram, Welch, and Blackman are criticized as they are limited by
the length of data. The consequences of having short data length are listed by Marple [12]. According

to him for the signal of length NV if two frequencies are separated by Af, then we need N > Aif data samples

to resolve them. Correlation is also assumed to be zero beyond N. The resolution limit imposed by a
short length N also causes bias.

In the Parametric methods, the output of a model (a linear system driven by white noise) is viewed as
the power spectral density of the signal. E.g., Yule-Walker autoregressive (AR) structure and the Burg
method [9]. Parametric methods would produce better resolution than nonparametric methods when
applied to a short-length signal [13]. Maghsoudi suggests using the autoregressive moving
average (ARMA) models for the EEG analysis [7]. In the method proposed by him, coefficients of the
ARMA model are identified and used to depict the waveform. The benefit of the ARMA method (over
the nonparametric estimation) is its ability to track the time-varying process [1]. For spectral estimation
of EEG signal, Tseng evaluated the performance of parametric methods [14]. He used the Akaike
information criterion (AIC) [15] for determining the orders of AR and ARMA models. The tests
suggested that the AR model would require a higher model order (8.67 on average) than the ARMA
model order (6.17 on average). It was also found that about 96% of the total EEG segments each 1.024
seconds long were efficiently represented by the AR model, and only about 78% could be represented
by the ARMA model. He suggested parametric spectral analysis methods based on autoregressive (AR)
and autoregressive moving average (ARMA) models as a better approach for the spectral estimates of
the EEG signal.

There has not been much scholarly work done with ARMAX in the spectral estimation of EEG, and
ARMAX may allow for a more accurate and flexible representation of the EEG time series. This research
will focus on applying the "autoregressive moving average with the exogenous input" (ARMAX)
method to estimate the spectrum of the EEG and compare its performance with ARMA, AR, and
periodogram. Maghsoudi used Extended Least Squares (ELS) and Recursive Extended Least Squares
(RELS) methods to estimate the parameters of the first order ARMA model [7]. The identified model
was then used to describe the time and frequency-domain properties of the EEG waveforms. This
research explores the possibility to estimate the parameters of ARMA and ARMAX models using
Particle Swarm Optimization (PSO).

PSO was first introduced by Eberhart and Kennedy in 1995 They described how PSO can be applied to
a nonlinear optimization problem through the simulation of a social system characterized by swarms
(e.g., bees) [16]. PSO is being used in system identification problems. Huang and colleagues have
demonstrated that PSO can be used for identifying an ARMAX Model for Short- term Load Forecasting
[17].
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3. Spectrum Estimate

Spectral density estimation of a signal would portray the distribution of the power contained in a signal
over the frequency within a finite set of data [18]. The two most abundant methods of spectral estimation
are as follows [9].

a. Nonparametric methods.

Nonparametric methods use signals to determine the power spectrum density. One such method that is
in the scope of this research is Periodogram. If x/n/ is a finite-length signal, a PSD estimate is the
periodogram P(e’") [2] that is based on Fourier transform as shown in Eq. 1.

. 1 . % . _ 1 .
P(e/") = - X(e")X"(e)" =+ 1X(e/™)|? Eq.1
Here, X(e/") is the Discrete Time Fourier Transfer (DTFT) of x/n] and N denotes the total number of
samples.
b. Parametric methods.

The model represents a relation between a linear system driven by white noise input and the output
[3]. The following parametric models are in the scope of this research.

i. AR Model

A simple Autoregressive (AR) model is defined by Eq. 2. The AR model is used when the current output
is dependent only on the previous outputs.

A(Qy(n) = e(n) Eq.2
ii. ARMA Model

Combining Autoregressive (AR) and moving average (MA) processes, a highly flexible class of
univariate processes called the ARMA [19] as described by Eq 3.

A(g@)y(n) = e(n)C(q) Eq.3
iii. ARMAX Model
The autoregressive moving average model with the exogenous inputs (ARMAX model) shown in Eq. 4
A(q)y(n) = e(n)C(q) + B(q)u(n — k) Eq. 4
Here, A(q), B(q) and C(q) are the polynomials of the corresponding filters’ coefficients.
k is delay,
e(n) indicates white noise.
u(n) represents the deterministic signal.

y(n) indicates the output of the system.

AR model uses only A(q) filter. e(n) and y(n) indicate white noise input and system output respectively
[20]. ARMA model incorporates A(q) filter (Autoregressive component) and C(q) filter (Moving
Average component). ARMAX incorporates ARMA and the disturbance dynamics known as exogenous
input e(n) [21].

Let’s, na, ny, and n. are the orders of the A, B and C; therefore, filter polynomials A, B, and C can be
written as Eq 5.
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Al =14+a;qg7  + -+ ay,q "
B(q) = by + byq ' + -+ by, q ™! Eq. 5
Cl@=1+ciqg7 ++cpq ™

In this research parameters for the AR model are obtained using the modified covariance (mcov) method
described by Hayes [22]. Parameters for ARMA and ARMAX are obtained using the Particle Swarm
Optimization (PSO) algorithm.

Particle Swarm Optimization
The Basic PSO algorithm [23] is described by Eq. 6.

Vi = wul + g ug X [Pbest,‘; - R,‘(] + ayu, X [Gbesti - R,l(] Eq. 6-1

Rics1 = Ri + Viys Eq. 6-2
RL Position of the i particle during k™ iteration.

vL Velocity of the i particle during k™ iteration.

Pbestt Individual best fitness achieved by a i particle till k™ iteration.

Gbest! Global best fitness of i particle till k™ iteration.

w inertial coefficient.

aiand a, Cognitive and social parameters.

ujand u, Random numbers between 0 and 1.

PSO Algorithm Flow Diagram
The PSO algorithm flow diagram is shown in Fig. 1 [24] [25] [26].
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Fig 1. PSO Algorithm Flow Diagram.

Loss function

The loss function of i model R;is calculated using a prediction error £(n), which is a nX1 vector of
prediction errors and a transpose of e(n) [27] as follows:

If (i) = det[-(e(n) X e(m)T)] Eq.7

Prediction Error of a model at position R; (PE)=¢(n) =y(n) —§(n) Eq.8
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y(n) is the target data and §(n) is the predicted output of the ARMAX model R;. A model producing a
small prediction error is considered a good model [4].

Akaike Final Prediction Error (AFPE)

Akaike's Final Prediction Error (FPE) criterion provides a measure of the model where the model is
tested on a different data set [15]. After computing all the models at all positions, the most accurate
model having the smallest AFPE is obtained using Eq. 9.

147
AFPE = If(¢,6) xl—% Eq. 9
d
n is the number of values in the estimation data set.
6 represents the estimated parameters.
d is the number of estimated parameters. Order of model coefficient.

The AFPE of each R; is the accuracy for the fit termed ‘Swarm fitness’ of the swarm R; Among all the
Swarm fitness of R; at K" iteration, the swarm fitness that is the absolute minimum (i.e., nearest to zero)
is called the ‘global best swarm fitness’ (Gbestx).

Mean Square Error

The Mean Square Error (MSE) between validation data and the model output is obtained by using Eq.
10.

MSE(n) = %(V(n) —9(n))? Eq. 10

When V(n) is the validation data, §(n) is the predicted output of the ARMAX model with [A B C], and
N is the length of data. The combination of the Akaike final prediction error [15] and Cramer’s rule of
determinant [28] yields Eq. 11 giving us a single-valued score of the MSE.

MSE(det) = abs[det( MSE x MSE™)] Eq. 11

MSE(det) is calculated from the score taken from the best model ARMA/X parameters. This score
signifies how well the model output may resemble the validation data.

4. Methodology

The process of estimating the parameters of the model with the real world’s experimental input-output
data is based on the statistical theory [7]. This research experiment follows the steps prescribed by Ljung
[27].

EEG Signal

The EEG data used in this research as input was obtained from Henri Begleiter [29] from the
Neurodynamics Laboratory at the State University of New York Health Center in Brooklyn. These data
were recorded to examine EEG correlates of genetic predisposition to alcoholism. It contains
measurements from 64 electrodes placed on the subject's scalps which were sampled at 256 Hz (3.9-
msec epoch) [29][8]. For our experiment, we used 0.1172 seconds length of signal from the randomly
selected data set. An example of the experimental data is shown in Fig. 2.
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Fig 2. EEG Signal

White Noise

The discrete-time random process represented by a random vector w is a white noise was generated.

Exogenous Input

Unlike ARMA, an ARMAX model requires an exogenous input. This input should be a deterministic
signal. In this study, the exogenous input u(t) was formed by the summation of three sinusoids of 5 Hz,
10 Hz and 18 Hz and sampled with sampling frequency f; = 256 Hz (like EEG signal) for 30 epochs and

total length of 0.1172 Seconds.

Models

First, we needed to verify that our algorithm would work properly. For this purpose, the ARMAX model
with the following arbitrarily selected parameters was created. We call it ARMAX (A, B, C).
A=11-0.1400 -0.4244 0.3963 0.3921 0.3764 0.0796 0.0321]

B =[-0.2347 0.1348 -0.2084 -0.0903 0.3789 -0.0220 -0.1044 0.0021]

C=110.01370.1123 0.1459 -0.0266 -0.1099 -0.1540 0.0419] Eq. 12

Eq. 12 represents the ARMAX [A, B, C] model of order 7. The model was simulated with exogenous
input u(n) and white noise e(n). The output of the model y(n) was recorded along with u(n) in a data set
Z.,as shown in Eq. 13. The training data set of one hundred (a pair of exogenous input u(n) and y(n))

were created.

Training Data = Z. ={ [y1(n) w()], [y2(n) ua(n)], [ys(n) us(m)].....[ y; (n),ui(m)]} Eq. 13

PSO Based Parameter Estimation

With the training data sets Z. and noise e(n), ARMAX model parameters were estimated using the PSO
algorithm. Parameters estimated using PSO are referred to as 4, B and C.

i. PSO Initialization

Inertial coefficient w was chosen between 0.8 and 1, Cognitive coefficient a(step size) was chosen
close to 2 and the social coefficient a,(step size) was also chosen to 2 as suggested by Kennedy [30].
The initial trial parameter vectors R; were randomly generated, where R; - uniform(a,b)’, i=1,2...k. and
d = n+m+r. Here, k= 50 and n, m, and r were the orders of filters 4, B, and C respectively. Each column
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(R)) ARMAX model is simulated with white noise and exogenous input to obtain output ¥;. Data sets Z;
containing pair of ©; and y; were created and is called swarm output.

Z=([91 () w@], [§2 () w@)], [§3 (1) w(@)].....[ Pi (0),ui(n)] Eq. 14
ii.Loss Function

The difference between the swarm output y and the output y of the training data Eq. 13 was used to
compute the loss function and overall AFPE. pbest and gbest is computed and updated which results in

a new swarm of matrix R;. Each column of R; gets a new ARMAX [4 B C] model. All the above steps
were repeated for 50 iterations.

x 107 local best fitness of swarm minimum at 5 swarm
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Fig 3. Pbest and Gbest

Fig 3 shows that at each step of the swarm (at each iteration), Gbest is decreasing.

iii.Validation
The best solution obtained using PSO algorithm must pass the validation test. To validate the model, the
validation data V(n) is created similarly to the training data. This data should never be used to train the
model. The model is simulated, and this time the output of the model is compared with V(n) instead of
target data y(n). Fig. 4-1 demonstrates the validation data from the initial coefficients [A B C] and
simulated output of the PSO-based coefficients [A B C ].

MODEL validation x10° MSE between validation data and model output
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Fig 4-1. Model Validation Fig 4-2. MSE During Model Validation
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It can be observed that the model output follows the validation data very closely. Fig 4-2 shows the mean
square error (MSE) defined by Eq 11. Small MSE between V (n) and 9(n) indicates that the performance
of the estimated model is satisfactory with a good model fit.

The process of the ARMAX parameter estimation and validation was repeated for 100 independent data
sets. MSE (det) was computed to record the MSE as a single-valued score. The average for the MSE(det)
was found to be as small as 2.42 E-06. This result indicates the functionality and convergence of the
PSO algorithm and ARMAX model.

iv.Repeat

Once the PSO technique was validated, we used real EEG signals to estimate the ARMAX model
parameters. Above steps were repeated for ARMAX of orders 3, and 5 and ARMA of orders 3, 5, and

7. Models of Orders 5 and 3 may be obtained by excluding appropriate higher-order coefficients from
the filters A, B, and C.

5. Result and discussion
Spectral Analysis

Analyzing the model enables us to produce a spectrum of that model that can be used as a spectral
estimate of a real EEG signal.

Frequency Response of Filters A, B, and C

The ARMAX parameters resemble three filters viz. A, B and C. The frequency response of each filter
was obtained with 512 points discrete Fourier transform. The frequency responses of filters B and C are
shown in Fig 5. The product of filter B and the exogenous input and the product of noise and filter C are
also shown in the figure.

Tl Cfe“”} = ARMA part= Noise( ejw]KCI,’ef""'}
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2 2
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= =

E E

3 3

5 d5 w -100¢

a2 =

[77] oy

£ 50 : - : : g 150 : : : :
e 0 01 02 03 04 052 "0 01 02 03 04 05

Mormalized Frequency (=7 rad/sample) Mormalized Frequency (=z rad/sample)

B( e'w) Exogenous part=u{ e™ )X B[ ™)
36 /

-38

40}

421

Paower Spectrum Magnitude (dB)
Power Spactrum Magnitude (dB)

44 i i i n i i i L
0 0.1 0.2 0.3 04 0.5 0 0.1 0.2 0.3 04 0.5
Mormalized Frequency (xzrad/sample)  MNormalized Frequency (xz rad/sample)
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Fig 5. Frequency Response of filters C and B.

Fig 5 shows that filter C is a low-pass filter. Since the EEG may be viewed as a signal having most
information within the lower frequency band, it is reasonably predictable that filter C is a low-pass filter.
The sum of an ARMA part and an exogenous part is shown in Fig 6. This sum is filtered by filter 4. The
frequency response of filter 4 is also shown in Fig 6.
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Fig 6. Frequency Response of freq sum and filter A

It could be seen in Fig 6 that filter //4 is a band stop filter. Filter responses of these filters are not
distinct; they vary with the length of data.

ARMAX Model spectrum estimate

When the sum of the exogenous part and the ARMA part is filtered with filter 4, the final output of the
ARMAX model is obtained. This output is the spectral estimate of the EEG. The output of the third-
order ARMAX model for 0.2 seconds (51 samples) of the EEG data is shown in Figure 7-1.

Specinal Estmation of ARMAX model
spectral estimation of ARMAX mods -

order 3
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Harmalized Fraquency [+ rdfeamgda)

Fig 0-1. Order 3 ARMAX Fig 0-2. Order 3, 5, 7 ARMAX

Similar experiments were performed for the model orders 3, 5, and 7. The results of all three orders are
compared in Fig 7-2 for the same EEG signal. An increase in the model order results in spectral estimates
of a seemingly higher resolution.

Comparison with the ARMA

The ARMA is a special case of an ARMAX model. By keeping an exogenous input equal to zero, the
same procedure used for the parameter estimation of ARMAX was implemented to estimate the
parameters of an ARMA model of order 3.
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Fig 8-1. Order 3 ARMA and ARMAX Fig 8-2 Order 3, 5, 7 ARMA and ARMAX.

Fig 8-1 shows that the ARMA model-based estimator has depicted only the general outline of the power
distribution. Whereas the ARMAX model-based estimator was able to distinguish between different
components of the spectrum. Fig 8-2. shows as the model order increases, spectral resolution becomes
better. EEG contains most of its information in lower frequencies; therefore, a better resolution at lower
frequencies is desirable for an EEG analysis. Tseng suggested that higher-order ARMA models are
needed to represent an EEG signal [9][14]. Our results agree with Tseng’s conclusion.

Comparison with the AR and with the Periodogram method.

Next, the comparison of an ARMAX-based spectral estimator was performed with an AR model and the
periodogram method. The modified covariance technique was used to estimate the coefficients of the
AR model. Comparisons were conducted for different orders of AR and ARMAX models using different
fragments of EEG sequence.
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Figures 9[1-3] indicate that the ARMAX-based estimates show a higher resolution. The AR method has
only depicted general trends in power distribution. Like ARMA, the low-order AR models are barely
suitable for an EEG spectral analysis. A DFT-based periodogram method shows a higher-resolution
estimate of power distribution. However, a close inspection reveals that the periodogram at lower
frequencies is unable to resolve different spectral components. The lack of distinct components at lower
frequencies would make the periodogram not ideal for EEG analysis.

6. Conclusion

The EEG spectral estimate obtained by the proposed method was able to depict distinct spectral
components not resolved by other methods, even compared to models of higher orders. ARMAX models
of the order three were generally found suitable for EEG analysis, while the ARMA-based method
generally required seventh order to produce decent spectral estimates. AR-based analyzers were unable
to produce spectral estimates of sufficiently high resolution. The periodogram-based estimator, while
showing decent spectral resolution for high-frequency content, failed to resolve low-frequency EEG
components.

Based on these observations, we recommend the ARMAX model for spectral analysis of EEG.

7. Suggestions and recommendations

In the future, the selection of the model order of a proposed method needs to be optimized. Such an
optimization would allow for avoiding over-ordering the estimator while maintaining sufficient spectral
resolution. Perhaps, traditional order selection criteria (Akaike or MDL, for instance) may be modified
for the ARMAX.

The study of the effects of short data fragments (while using a model parameters estimation process) is
another important area of future research. Reliable spectral estimation for short data sequences is of great
interest in many fields. Therefore, knowing the practical limits of the proposed method (i.e., the
minimum duration of data sequence still yielding acceptable estimates) would be important for its
applications.

This research may result in the development of a common tool capable to estimate the spectrum of all
the channels of EEG simultaneously. The latter may be used to identify the characteristics of interest in
the EEG.

Finally, the proposed spectral estimation algorithm may also be applied for the analysis of other
naturally generated signals, such as speech or seismological data. Appropriate tests would be necessary
before recommending the ARMAX model for those applications.
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