Is early diagnose for Vitamin A deficiency better than the current supplementation programme of Nepal?

Dr. Padam Simkhada, Dr. Brijesh Sathian, Dr. Sudhir Adhikari, Dr. Edwin R. van Teijlingen, Dr. Bedanta Roy

References
This article cites 19 articles

Permissions
To obtain permission for the commercial use or material from this paper, please write – jbs.editors@gmail.com

Cite this Article

PLEASE SCROLL DOWN TO READ THE ARTICLE

This article is Open Access and is published under the Creative Commons CC-BY License (https://creativecommons.org/licenses/by/4.0/). This license permits use, distribution and reproduction in any medium, provided the original work is properly cited. NHRWS does not give any warranty express or implied or make any representation of the accuracy of the contents or up to date. It (includes - instructions, formulae and drug doses) should be independently verified with all available primary sources. The publisher shall not be legally responsible for any types of loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
Vitamin A was the first vitamin identified and hence given the first letter in the alphabet. Vitamin A is an essential nutrient, which we can consume from plants [β carotene] and animals [pre-formed vitamin A] in our diet [1]. It is a fat-soluble vitamin needed for our immune system to protect us from infectious diseases [1,2]. It is also required for usual performance of the visual system, epithelial integrity, reproduction, production of red blood cells and maintenance of cell function for growth [3]. People can have too much or too little Vitamin A. Vitamin A deficiency [VAD] is caused by inadequate intake of the daily requirement of meat, eggs, fruit and vegetables, particularly where rice is the staple food (doesn't contain carotene)[4-8]. Particularly good sources are green leafy and yellow/orange vegetables and coloured fruits, the β carotene is absorbed better from cooked vegetables (or homogenized) and combined with oils or fat. People can also have a too high intake, referred to as Vitamin A toxicity. This is usually chronic but can also be acute due overdose (often in children). A chronic Vitamin A overdose can cause headaches; changes in skin, hair, and nails and in pregnant mothers birth defects. Reducing the Vitamin A intake results in a return to normal apart from babies with birth defects where the damage is done. Acute toxicity of vitamin A can manifest with anorexia, pruritus, vomiting, bulging fontanelle and other symptoms of pseudotubor cerebri [9]. A too high dose of Vitamin A supplementation may affect respiratory health [10, 11] or bone health [12]. There was noteworthy raise in rate of pneumonia in well nourished children who had taken 10,000 IU of weekly supplementation[13].

The recommended dietary allowance (RDA) for vitamin A is 300 micrograms per day in children aged 3 years. The RDA for upto 12 months age group is 400-500 micrograms per day, 4-8 years is 400 micrograms [14]. VAD leads to vision problems and due to the lower immunity a variety of illnesses together with measles, diarrhoea, and respiratory infections, the latter are the principal causes of mortality among the children in low-income countries including Nepal [3, 4]. The World Health Organization has suggested vitamin A supplementation for pregnant women, breastfeeding mothers and children under 5 [15]. Infants aged 6–11 months are given 100000 units and children aged one to five years, 200000 units of vitamin A every six months as part of the National Vitamin A Prophylaxis programme in Nepal [16].
Vitamin A supplementation coverage was 78% among children age 6-11 months in the 2011 National Demographic and Health Survey. The MoHP (Ministry of Health & Population) started Vitamin ‘A’ distribution by giving 6 months children their first dose Vitamin ‘A’ Supplements (VAS) in three districts throughout 2013. This programme increased Vitamin A coverage among the children age 6-8 months from 56% during the baseline to 70% at the end line with difference in difference (DID) between intervention and control district by 7%. The VAS coverage among children aged 6-11 months in three districts remained at more than 90%. The new delivery method and its role in getting better VAS coverage among 6-8 months children was well acceptable in the Micronutrient Global Conference, 2014. Using VAS 6-11 month’s programme modeling, Nepal is scaled up to a further 15 districts in 2014/2015, and 53% of postpartum mothers received Vitamin A supplements in 2014 [17]. MoHP is also intended to control the Vitamin A Deficiency (VAD) by ensuring the availability of VA capsules at health facilities, by increasing the awareness of importance of VA capsules supplementation, bi-annual distribution of vitamin A capsule to children between 6 and 59 months through FCHVs (Female Community Health Volunteers), advocating for increased home production, consumption and preservation of Vitamin A rich foods, strengthen the usage of Vitamin A Treatment protocol, promoting the consumption of VA rich foods and balanced diet through nutrition education, supplementation of Vitamin A capsule (200,000 IU) to postpartum mothers through healthcare facilities and community volunteers.

It is evident that Vitamin A prevents deaths due to Measles but the correct intervention would be to give Measles immunization not to give a mega dose of Vitamin A. Kapil et al. suggested that it is the occasion to discontinue giving indiscriminate enormous doses of synthetic vitamin A to Indian children, which has to be considered equivalent to Nepal as a neighbouring country with ethnic similarities [18]. Pant et al. conducted a three-year follow-up evaluation of the effectiveness of two approaches to Vitamin A deficiency prevention—nutrition education and mega-dose capsule distribution—with almost 40,000 children 6 months to 10 years of age in Nepal [19]. Although the effects of both programmes were equal the capsule achieved higher coverage rates at a lower expenditure while the educational intervention provided economies of scale and potential for long-term sustainability. The most practical approach would be a comprehensive national programme that included both these components as well as maternal literacy training by their study [19]. There are several systematic reviews, randomized control trials, cohort studies and commentaries published in this context but still there is no precautionary measures have been taken.

In conclusion, we agree that prevention is still better than cure, but instead of a mass Vitamin A supplementation in Nepal, we need a health promotion intervention aiming to increase the intake of relatively cheap vegetables and fruit (containing β-carotene). In addition we need better surveillance and help to identify children with Vitamin A Deficiency and provide them with Vitamin A supplements. The primary focus should be on adopting sustainable food based approaches to combat vitamin A deficiency.

References


