In vitro anti-bacterial activity of *Tinospora cordifolia* leaf extract and its phytochemical screening

Prajwala B¹, Priyanka S², Raghu N³, Gopenath N⁴, Gnanasekaran A⁵, Karthikeyan M⁶, Indumathi R⁷, Ebrahim NK⁸, Pugazhandhi B⁹, Pradeep P¹⁰, MS Ranjith¹¹, Balasubramanian S¹², Kanthesh M Basalingappa¹³*

Corresponding author:
Dr. Kanthesh M Basalingappa, Ph.D., Assistant Professor, Division of Molecular Biology, Faculty of Life Science, JSS Academy of Higher Education & Research, SS, Nagara Mysore -570015
Email: kantheshmb@jssuni.edu.in [ORCID](https://orcid.org/0000-0003-2888-8589)

Information about the article:

Received: Nov. 10, 2018
Accepted: Jan. 12, 2019
Published online: April 15, 2019

Cite this article:

ABSTRACT

Background
Antimicrobial resistance is the main concern worldwide to combat infectious. Over the years studies on leaf extracts *Tinospora cordifolia* have demonstrated the potent role its antibacterial property. The current study is an attempt to test its antibacterial property against Escherichia coli cell division.

Material and methods
Phytochemical screening assay of *T. cordifolia* leaf extract was done using standard procedure and the results showed the presence of alkaloid, carbohydrate, terpenoid, steroid, tannin, amino acid, flavonoid and glycoside components.

Results
HPLC analysis revealed the presence of berberine in *T. cordifolia* leaf extract. Further *E. coli* cells were treated with berberine to study its efficacy in inhibiting cell division. Antibacterial assay was performed by using disc diffusion method.

Conclusion
Among aqueous, methanolic, ethanolic, chloroform, hexane and acetone extract only methanolic extract showed zone of inhibition.

Keywords
T. cordifolia, Berberine, HPLC, *E. coli*

Publisher
Nepal Health Research Society, Bahundhara -6, Gokarnesow Municipality, Kathmandu, Nepal
eISSN 2382-5545
© The Author(s), 2018
Content licensing: [CC BY 4.0](https://creativecommons.org/licenses/by/4.0)
Introduction

Microorganisms, like any other life form, tend to evolve over time. Survival is the key for existence and it must adapt to its surrounding. Any interference to their survival must be overcome. The use of antimicrobials, even when used under appropriate conditions, can lead to antimicrobial resistance; let alone its indiscriminate usage resulting in medication ineffectiveness and allowing the infections persist in the body for a longer duration. Resistant strains of microbes continue to proliferate and poses major risk factor for severe infections.

Plant and plant based antimicrobial agents were used against the microbial infection for ages all over the countries. Plant-derived medicine is the major antimicrobial agents for 60 to 80% of populations in the developing countries [1]. Traditionally, crude plant extracts are used as herbal medicine for the treatment of human infectious diseases. Natural compounds present in medicinal plants enhance the immune status and maintain disease free state [2]. Because of this medicinal products research gains important role in clinical research.

T. cordifolia is one of the most widely used herb in Ayurveda, one of the ancient systems of medicine practiced in India. It belongs to Menispermaceae family and commonly called heart leaved moonseed plant in English, Guduchi in Sanskrit, Giloe in Hindi, Teppatige in Telugu [3]. It has large, deciduous shrub with twinning branches, leaves are simple, alternate and long petiole. Flowers are unisexual and small; fruits are drupes, turning red when ripe. Fruits aggregate of _T. cordifolia_ belongs to different classes of alkaloids, steroids, glycosides, diterpenoid lactones, sesquiterpenoids, phenolics, aliphatic compound [4-5]. These compounds are present in all parts of _T. cordifolia_ but its concentration is more in root, stem and leaves. Berberine and furanolactone is the main compound of the plant [6]. The plant is of great interest to researchers because of its medicinal properties like anti-bacterial, anti-fungal, anti-cancer, anti-periodic, anti-spasmodic, anti-stress, anti-inflammatory, anti-arthritis, anti-neoplastic, anti-diabetic activity [7]. All parts of the plant are reported to be useful in ethnobotanical survey conducted by ethnobotanist [8].

Medicinal properties of _T. cordifolia_ is presently applied in modern medicine and used to overcome the adverse effect of chemotherapy [9]. The plant is also used in the treatment of jaundice, arthritis, urinary tract infections (UTI) etc. and is rich in micronutrients such as calcium, phosphorous, copper, manganese, zinc and iron [3]. Roots, stem and leaves of _T. cordifolia_ has no toxic effect on human body when orally consumed [2]. In our present study preliminary phytochemical screening and anti-microbial activity of different extract of leaves of _T. cordifolia_ were evaluated using standard procedure.

Material and methods

Collection of plant material

Fresh plant leaves were collected from Nursery Horticulture Department, Mysore, authenticated by Department of Botany, Maharani’s College, and Mysore. Leaves were washed in running tap water, shade dried for 15 days.

Solvent extraction

Dried leaves were crushed and finely powdered using pestle and mortar. Leaf powder was extracted with aqueous, methanol, ethanol, chloroform, hexane and acetone by Maceration method [10]. 20gms of well grinded leaf powder was dissolved in 200ml of solvent. The obtained solution was filtered using filter paper and the final filtrate was evaporated to dryness at room temperature. Scraped out the content and kept it at 4º C in order to minimize the possibility of contamination and to maintain its bioactivity for longer period.

I. Phytochemical screening

Various tests were conducted to confirm the presence of phytochemical in _T. cordifolia_ leaf extract such as alkaloid, carbohydrate, terpenoid, steroid, saponin, tannin, amino acid, flavonoid, glycoside and protein. Phytochemical analysis was carried out according to following standard procedures.

i. Amino acid:

Ninhydrin Test: 2 drops of ninhydrin solution with 2 ml of extract, boil, and appearance of blue color indicate the presence of amino acid [9].

ii. Alkaloid:

Wagner’s test: For 1 ml sample solution adds few drops of Wagner’s reagent; reddish brown precipitate will form.

iii. Carbohydrate Test:

Fehling’s test: For 1 ml Fehling A and 1 ml Fehling B reagents add 1 ml of extract boiled (10min). Formation of brick red color precipitate indicates the presence of carbohydrate [11].

iv. Terpenoid test:

Salkowskis’s test: 1 ml of crude extract with 1ml of chloroform, evaporated to dryness, adds 2ml of concentrated H₂SO₄ and heated for about 2 minutes. Grayish color will appear.

v. Saponin test:

Froth test: 2 ml of crude extract with 2ml of distilled water in a test tube, shaken vigorously (warm); formation of stable foam indicates the presence of saponin.

vi. Glycoside test:

Liebermann’s test: For 2 ml of the extract add 2 ml of chloroform and 2 ml of acetic acid, solution cooled well in ice, add Sulphuric acid carefully color changes into green.
vii. Protein test:
Millon’s Test: 3 ml extract and 5 ml of Millon’s reagent, heated. Color changes from white precipitate to brick red on heating [12].

viii. Steroid test:
Salkowski’s test: 2ml of crude extract dissolved in 2ml of chloroform add 2ml of con. H₂SO₄ sidewise, red color ring is produced [13].

ix. Tannin test:
FeCl₃ test: 2ml of extract dissolved in 2ml of distilled water (stirred), add few drops of FeCl₃, green precipitate will form [14].

x. Flavonoid test:
FeCl₃ test: 1ml of extract dissolved with few drops of ferric chloride, green color will form [15-18].

II. Qualitative analysis of HPLC
Qualitative analysis of HPLC was carried out to check presence of berberine in aqueous, methanol, ethanol, chloroform, hexane and acetone extract. Analysis was carried out using Schimadzu HPLC, C-18 column with a mobile phase of orthophosphoric acid at flow rate of 1ml/min with UV detector at 345nm.

III. Quantitative analysis of HPLC
Berberine standard was purchased from Sigma-Aldrich, Bangalore and it was run against aqueous, methanol, ethanol and acetone extract. Qualitative analysis of HPLC was carried out using C-18 column with a mobile phase of acetonitrile at flow rate of 1ml/min with UV detector at 345nm.

IV. Anti-bacterial activity
Antibacterial activity of T. cordifolia leaf extract was carried out using disc diffusion method against Escherichia coli. Aqueous, methanolic, ethanolic, chloroform, hexane and acetone extracts were used as test compound and ampicillin was used as reference standard. Initially E. coli was cultured in nutrient broth for 24 hours at 37°C. Agar plate was prepared by adding 25ml of nutrient agar media into the sterile petri plate, allowed to solidify. 10µl of bacteria was inoculated and streaked on agar plate using cotton swabs. Disc containing different concentration of T. cordifolia leaf extract were placed on agar plates. Plates were incubated overnight at 37°C. Zone of inhibition was measured after 24 hours using ruler and compared with standard ampicillin [19].

Results
Phytochemicals are chemicals produced by plants through primary or secondary metabolism. Preliminary phytochemical screening assay of T. cordifolia leaf extract was conducted to check the presence of phytochemicals. T. cordifolia leaf extract showed positive test result which indicates the presence of alkaloid, carbohydrate, terpenoid, steroid, tannin, amino acid, flavonoid, glycoside and protein. The test for alkaloid and protein has given positive result and saponin shown negative result in all the six extract. Carbohydrates were present only in chloroform extract, amino acid in aqueous extract and flavonoid in acetone extract. Methanol and acetone extract showed highest number of phytochemicals.

Table 1: Qualitative phytochemical analysis of Tinospora cordifolia leaf extract

<table>
<thead>
<tr>
<th>Phytochemicals</th>
<th>Alkaloid</th>
<th>Carbohydrate</th>
<th>Terpenoid</th>
<th>Steroid</th>
<th>Saponin</th>
<th>Tannin</th>
<th>Amino Acid</th>
<th>Flavonoid</th>
<th>Glycoside</th>
<th>Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td></td>
</tr>
<tr>
<td>Aqueous</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Methanol</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ethanol</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Chloroform</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Hexane</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Acetone</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

(+ve) Present, (-ve) Absent

Table 2: Qualitative HPLC analysis of Tinospora cordifolia leaf extract

<table>
<thead>
<tr>
<th>Sample</th>
<th>Retention time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqueous</td>
<td>3.609</td>
</tr>
<tr>
<td>Ethanol</td>
<td>3.582</td>
</tr>
<tr>
<td>Methanol</td>
<td>3.580</td>
</tr>
<tr>
<td>Chloroform</td>
<td>Nil</td>
</tr>
<tr>
<td>Hexane</td>
<td>Nil</td>
</tr>
<tr>
<td>Acetone</td>
<td>3.577</td>
</tr>
</tbody>
</table>

Qualitative analysis of HPLC was carried out to check the presence of berberine in all the six extract. Results revealed the presence of berberine in aqueous, ethanol, methanol and acetone extract and absence of berberine in chloroform and hexane extract. Based on retention time berberine peak was identified. Retention time 3.5 corresponded to berberine [14].
Figure 1: HPLC analysis of aqueous extract of *T. cordifolia*

Figure 2: HPLC analysis of methanolic extract of *T. cordifolia*

Figure 3: HPLC analysis of ethanolic extract of *T. cordifolia*

Figure 4: HPLC analysis of chloroform extract of *T. cordifolia*

Figure 5: HPLC analysis of hexane extract of *T. cordifolia*

Figure 6: HPLC analysis of acetone extract of *T. cordifolia*

Figure 7: HPLC analysis of Berberine standard (The peak at retention time 5.26 corresponding to Berberine)

Figure 8: HPLC analysis of methanolic extract of *T. cordifolia* (Analysis showed well separated berberine peak at retention time 4.906)
Anti-bacterial activity of *Tinospora cordifolia*

Table 4: Anti-bacterial activity

<table>
<thead>
<tr>
<th>Test organism</th>
<th>Test compound</th>
<th>Concentration(µl/disc)</th>
<th>Zone of inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>Methanol</td>
<td>10µl</td>
<td>0.3mm</td>
</tr>
<tr>
<td></td>
<td>20µl</td>
<td>0.5mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30µl</td>
<td>0.8mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aqueous</td>
<td>10µl, 20µl, 30µl</td>
<td>Nil</td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>10µl, 20µl, 30µl</td>
<td>Nil</td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td>10µl, 20µl, 30µl</td>
<td>Nil</td>
</tr>
<tr>
<td></td>
<td>Hexane</td>
<td>10µl, 20µl, 30µl</td>
<td>Nil</td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td>10µl, 20µl, 30µl</td>
<td>Nil</td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>10µl</td>
<td>1.6mm</td>
</tr>
<tr>
<td></td>
<td>Aqueous</td>
<td>10µl, 20µl, 30µl</td>
<td>Nil</td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>10µl</td>
<td>1.6mm</td>
</tr>
<tr>
<td></td>
<td>Aqueous</td>
<td>10µl, 20µl, 30µl</td>
<td>Nil</td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>10µl</td>
<td>1.6mm</td>
</tr>
</tbody>
</table>

T. cordifolia leaf extract was used as test compound to inhibit the growth of *E. coli* with Ampicillin as reference. Methanolic extract showed zone of inhibition or inhibitory effect on growth of *E. coli*. Compared to the remaining extracts which may be attributed to chemical constituents responsible for antibacterial activity are more soluble in methanolic extract.

Quantitative analysis of HPLC was carried out to know the concentration of berberine in aqueous, ethanol, methanol and acetone extract along with berberine standard. In qualitative analysis chloroform and hexane extract showed the absence of berberine, hence chloroform and hexane extract was not taken in quantitative analysis. Based on the retention time of berberine standard, berberine peak was identified in remaining chromatogram. In quantitative analysis methanolic extract showed 1.1% of berberine.
Discussion
Phytochemicals are biologically active compounds found in plants. Naturally they help plants to defend against microbes and these important properties very useful for future drug discovery [20-22]. In this study, preliminary phytochemical screening assay was conducted by using aqueous, methanolic, ethanolic, chloroform, hexane and acetone extract using standard procedure. Result revealed the presence of alkaloid, carbohydrate, terpenoid, steroid, saponin, tannin, amino acid, flavonoid, glycoside and protein. Methanol and acetone extract showed more number of phytochemical. Preliminary phytochemical screening assay proved that T. cordifolia leaf extract is rich in primary and secondary constituents. Qualitative analysis of HPLC was carried out using aqueous, methanol, ethanol, chloroform, hexane and acetone extract. Aqueous, methanol, ethanol and acetone extract showed presence of berberine [23]. Chloroform and hexane extract did not show berberine peak. Quantitative analysis of HPLC was carried out with aqueous, methanol, ethanol and acetone extract. Aqueous extract contains 0.2%, methanol extract contains 1.1%, ethanol extract contains 0.5% and acetone extract contains 0.1% of berberine [24]. Methanol extract contains more concentration of berberine compare to other extracts. Anti-bacterial assay was performed with aqueous, methanolic, ethanolic, chloroform, hexane and acetone extract [25-29]. Among that methanol extract showed anti-bacterial activity. Remaining extracts did not show much inhibitory activity. The result obtained from this experiment is just a rough estimate in finding the medicinal property in terms of antibacterial activity of the plant.

Conclusion
The present study indicates T. cordifolia leaf extract was rich in primary and secondary constituents. Most of the biologically active phytochemicals were present in methanolic extract. In HPLC analysis berberine was present in aqueous, methanolic, ethanolic and acetone extract its concentration was more in methanolic extract. In antibacterial activity methanolic extract was effective against E. coli. Since the methanolic extract showed positive result in every assay, the present results can be considered beneficial for further investigation.

Abbreviations
urinary tract infections (UTI)

Acknowledgments
The authors would like to appreciate the JSS AHER, Mysuru, for their cooperation throughout the study.

Authors’ contribution
Conceptualization, data curation was done by PB, PS, RN and BMK., formal analysis, manuscript writing, and editing was done by all authors. Final manuscript was approved by all authors.

Competing interests
The authors declare no conflicts of interest.

Publisher’s Note
NHRS remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. The publisher shall not be legally responsible for any types of loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Author information
1 Miss Prajwala, Research Scholar
2 Priyanka S, Research Scholar
3 Raghu Nataraj, Assistant Professor
4 Dr. Gopenath N, Associate Professor, Ph.D.
5 Dr. Ashok Gnanasekaran, Ph.D. Associate professor, Microbiology
6 Dr. Murugesan Karthikeyan, Ph.D., Senior lecturer, Microbiology
7 Indumathi Rajaraman, M.Sc., M.Phil, PhD scholar,
8 Dr. Ebrahim Nangarath Kotakal Cheria, Ph.D., Senior lecturer, Physiology
9 Mr. Pugazhandhi Bakhthavatchalam, M.Sc., Senior lecturer, Anatomy
10 Dr. Pradeep Palanisamy, MD, Senior lecturer, Anatomy
11 Prof. Dr. Ranjith Mehenderkar, Ph.D., Professor, Microbiology
12 Balasubramanian S, Director Research, JSS AHER, Mysuru.
13 Dr. Kanthesh M Basalingappa, Ph.D. Assistant Professor, Molecular Biology
14 Division of Molecular Biology, Faculty of Life Science, JSS Academy of Higher Education & Research, Mysore.
15 Division of Biotechnology, Faculty of Life Science, JSS Academy of Higher Education & Research, Mysore.
16 Faculty of Medicine, Quest International University Perak, No. 227, Plaza Teh Teng Seng (level 2), Jalan Raja Permaisuri Bainun, 30250 Ipoh, Perak Darul Ridzuan, Malaysia
17 Director of Research, JSS AHER, SS Nagara, Mysuru-570015

References

24. Balouri M, Sadiki M, Ibnsouda KS. Methods for In vitro evaluating antimicrobial activity: A

