Right thyroid lobed cyst in a middle-aged woman: A case report

Afordun AM1*, Quadri KK2, Okesina AA3, Ojewale AO4, Bakare AA5, Eze ED6, Ojuolape SG7, Odoma S8

*Corresponding author:
Afordun Adam Moyosore, Ph.D. Senior Lecturer, Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Uganda
Email: adam.afodun@kiu.ac.ug ORCID

Information about the article:
Received: Feb 17, 2020
Accepted: May 14, 2020
Published online: June 30, 2020

Cite this article:

Publisher
Nepal Health Research Society, Bahundhara -6, Gokarnesowor Municipality, Kathmandu, Nepal
eISSN 2382-5545, ISSN 2676-1343 (Print)

© The Author(s). 2020
Content licensing: CC BY 4.0

ABSTRACT

Background
Thyroidal ultrasound has been used to detect neck lesions and nodules for decades. However, cystic thyroid disease is rare with few reported series. Different consensus exists concerning availability of medical treatment and the limited role of surgical management.

Case presentation
We present a 31-year-old female with obvious neck swelling and dysphagia. Ultrasound diagnosed a suspected colloidal thyroid cyst in the right lobe. The hypoechoic cystic mass measures 3.2 cm x 3.6 cm on frozen sonogram, with evidence of bilateral (cervical) lymphadenopathy. Thyroid cystic nodule viewed via sonar corresponds to detected mass finding on observation and palpitation. Researchers have recently standardized Thyroid-Imaging- Reporting and Data System (TIRADS), mostly in the United States.

Conclusion
If Fine Needle Aspiration (FNA) and hormone therapy fail, cysts larger than >2.8cm may require surgical intervention, especially when there is a danger of great-vessel compression.

Keywords
Fine Needle Aspiration (FNA), lymphadenopathy, neck, nodules, thyroid cyst, ultrasound
Background
Thyroglossal cyst (congenital or acquired) are masses occurring around the cervical region. The thyroid gland develops embryologically at day 17 from the base of the pharynx, with contributing strands from the pharyngeal pouches [1]. According to a Turkish research, occurrence of Echinococosis cyst in the thyroid is about 0.5% of all cases [2]. Embryogenesis of the thyroid gland is important for understanding the remote causes of thyroglossal duct cyst. The primordial membrane of the thyroid gland unites with the tongue by a streak known as the thyroglossal duct with an epithelial link in the base of the buccal cavity by the foramen cecum [3]. It has been documented that malignancy is rarely encountered in the neck region (with an occurrence rate of <2% in patients with thyroidal carcinoma [3]. There are some reports of Echinococcus granulosus embedded in the thyroid gland in parts of Africa, South America, and Russia. Thyroid cysts are ubiquitous in animals and humans [4].

The etiologies of differential thyroid pathologies must be taken to account [5]. Solitary nodules have the same risk of malignancy with multinodular goiters [6, 7]. Ultrasound evaluation of the neck medial to the great vessels in cancerous cases is recommended [8] when Thyroid Stimulating Hormone (TSH)–stimulated thyroglobulin is not detected. Female gender, old-age, radiation exposure, and iodine deficiency in the diet are associated with thyroid cysts [9]. Some complex forms of thyroglossal/intrathyroid duct cysts in adults are rarer, and surgical decision making will depend on an excellent diagnostic judgment.

Case presentation
A 31-year-old African woman with a neck lump presented to the ENT outpatients’ department (of Crystal Specialist Hospital, Akowonjo–Dopemu, Lagos) before referral to the radiological unit. She noticed the swelling six months before presentation with a subsequent increase in size. A Thyroid Function Test (TFT) was recommended, with free tri-iodo-thyroxine (T3) toxicosis: for TSH =7.2 pmol/I (Normal range 2.5–6.0); and free T4 / Thyroxine was 16.01 pmol/I (Normal range 8-22). Thyroid hormonal levels were monitored after ultrasound by physicians before, during, and after treatment. Past medical history from records was not alarming, apart from slight blood pressure increase. She had a good appetite with average weight. The patient had no past event of irradiation to the neck or head.

On patient palpitation, a semi-tender lump at the RT anterior lobe region measuring around 3.9 x 4.2cm was observed lateral to the midline. A 7.0 -10 MHz linear transducer (General Electric, Pro Logic 3- made in USA) was used to scan. A 32mm x 36mm solitary cystic mass filled with fluid and striations was noted. Internal echoes and strands of cystic- striation was observed in-situ. Further abdominal evaluation with ultrasound appeared normal. It presented as a protrusion in the RT anterior lateral region with mobility on swallowing, profuse sweating, and non-prominent bulging of the tongue. High blood pressure of 160/88, feeling of anxiety, and cervical lymphadenopathy was also observed, however, there was no evidence of thyrotoxicosis. The size of the thyroid cyst should not be an ultimate indicator of malignancy and benignity.

Diagnostic Ultrasound Assessment

Figure 1 – Sonogram of the neck mass shows a hypoechoic nodule in the RT thyroid lobe, note the ‘halo’ sign observed in the striated fluid-filled cyst [C]: 32mm x 36mm. Non-neoplastic benign nodule. Transverse ultrasound view of a large, predominantly cystic nodule. Note tracheal gas shadow at the midline; TG= Thyroid gland, T= Trachea.

Figure 2 – [Split B-mode image] Thick-walled cystic mass [C] antero-lateral to the thyroid gland. Midline Isthmus [I], Blood vessels (vasculature) [V]. See sonoluent ring at the border with the possible absence of internal blood flow consistent with a benign finding.
Our case observation (Figure 1) is in agreement with a 2002 report [12]; since benign thyroid cysts present with an anechoic pattern on sonar, while carcinogenic and adenoma cysts show a mural nodule. Neck ultrasound to evaluate thyroid bed cysts is recommended every six months after initial discovery [13]. There seems to be a female preponderance of this ailment (thyroid cysts); thereby, seeking more clinical intervention if the occurrence is in males. Furthermore, it is understandable that the patient developed a large cyst since some types of thyroid cysts are a result of solid nodular degeneration [14]. Hyperplastic thyroid nodules were slightly displaced laterally with very minimal aberration from neck para-tracheal lymph nodes. Rupture of a cyst in the neck (Figure 2) region may cause infections and anaphylactic shock in extreme cases. In this cystic case and others, molecular markers can help evaluate the carcinogenic potential of thyroid tissue [15] if malignancy is suspected.

Etiology and Demographics
Two studies reported all benign nodules contained 40-53% cystic components [16]. Breakdown of a retrospective study of 6,219 patients with cystic thyroid nodules revealed 1,983 cystic make-up and 4,236 solid neck masses [17]. After FNAC examination, 11.9% (506) of the patients underwent surgical operation, compared to 7.2% (143) of cystic thyroid masses. Post-surgical data showed about 0.65% of cystic thyroid lesions were diagnosed as malignant. Out of the 649 nodules excised, 151 out of 506 (29.8%) and 13 out of (143) 9.1% were malignant in the solid and cystic groups [18]. An accurate estimate of the precise incidence of malignancy in cystic thyroid changes is difficult as sparse available data on surgical management of parathyroid cystic lesions account for an estimated 3% of neck cysts [19]. Colloid cysts, nodules, and thyroiditis account for over 80% of thyroid nodules, with benign neoplasms at about 13% and thyroid carcinoma accounting for 5-20%. In thyrocystic malignancy, papillary thyroid cancer is the commonest (70%) followed by follicular 10-15%, medullary 12% and anaplastic (5 – 15%) [21].

Clinical and Imaging Findings
The presence of certain features is manifest through ultrasound, such as regular cystic margin, a hypervascular chaotic arrangement of blood vessels by color Doppler scan. No evidence of micro-calcifications or specific sonographic punctate echogenicity seen (Figures 1-2). Historologically (excluded in this report), thyroid cysts may show colloid or follicular adenoma and colloid degeneration. Other contents such as hemorrhagic exudate, gelatinous content, murk reddish-brown fluid or errant “colorless” liquid in-situ [22]. Sonar scan of the neck showed a heterogenous thyroid gland with multiple normoechoic local lesions and low echo fluid regions in the RT lobe with the nodule approximately 3.56cm x 2.00cm.
Treatment and Prognosis
For ‘exponential’ thyroid cysts and benign enlargement of thyroid nodules, levothyroxine (which suppresses TSH to <0.3mIU/L) was used for treatment in the past, however, its efficacy is controversial at best [23]. Increased chances of atrial fibrillation [24], low bone density [25] are side effects correlating with TSH suppression therapy. Clinical (in)experience alone may be inaccurate concerning thyroid cysts and may lead to under-treatment or over-treatment in these patients. Thyroid nodules from literature revealed 4-8% in adults detected by palpitation, 41% by ultrasonography and 50% morbid/pathologic examination in autopsies [26].

Surgery is usually recommended for cysts >3.2 cm; continuous growth and inconclusive FNAC interpretation [27]. No history of neck irradiation or paralysis of the vocal cords was experienced. However, symptoms of (acute) dysphagia, dysphonia, and gradually ‘crept up.’ Past family records were negative for thyroid disorders and showed no evidence of radiation therapy. Because most lumps are benign lesions, they do not normally receive surgical attention.

Differential Diagnosis
A reliable FNA method yielded benign cytology. Depending on its medical definition, greater than 33% of all isolated thyroid nodules are cystic [28]. General improvement in ultrasound resolution allows for the identification of cysts less than <6 mm in diameter. Fine Needle Aspiration Cytology (FNAC) is a reliable distinctive procedure for classifying malignant or benign thyroid nodules. A combination with grey-scale ultrasound is widely recognized by clinicians; however, in solid neck masses, the distinction is less clear.

Even though cystic diagnosis by ultrasound and manual palpitation can be subjective, the general incidence of pre-operative diagnosed malignancy is low thyroid cysts following FNAC [29]. Diagnostic competence of FNAC in thyroid cysts seems lower to results obtained from the same in neck masses with simultaneous specificity and sensitivity at about 52 and 88% [18].

Pathogenesis of thyroid cysts is unclear and murky, with suggested leading cause to be hemorrhaging and clustering of thyroid follicle. Therapy for this case report could include the following: laser photocoagulation [30], thyroid hormone therapy [31], and repeated aspiration [32], an attempt to return it to normal size (Figure 3). Modern imaging techniques will allow for diagnostic improvements in identifying cysts larger than 12 cm (120mm) in diameter for reliable exploration in high-risk populations. No recommendation was made for surgery (thyroidectomy) [33]; sclerosing therapy [34-36] will soothe, ameliorate, and reduce the cyst for cosmetic reasons.

Conclusion
Studies demonstrating patient demographics, size of the tumor, sex, prognosis, and etiology of cysts should be compared and analyzed by pathologists. To prevent further complications, we advised frequent follow-up. The use of aspiration cytology in cases of thyroid nodules is debatable among medics as dissemination may occur combined with technical difficulties. Neck biopsy/ultrasound guided FNAC could help avoid needless surgeries on neck masses. If the cyst occurs proximal to the trachea or posterior thyroid capsule, the inflammatory changes observe it should be classed as a differential diagnosis. Part of the thyroid-case-report challenge is to properly reassure patients with benign disease and properly diagnose the minority with malignant tendencies.

Learning points
1. Biochemical assay levels of thyroid hormones: thyroxin-binding globulin, thyroglobulin, and triiodothyronine may NOT distinguish malignancy from benignity.
2. Total reliance on one diagnostic or therapeutic modality could be misleading; a multidisciplinary approach (ultrasound, cytology/FNAC) should be used.
3. Sistrunk surgical procedure may be used for correction if the thyroid is normal (radiologically), but with the cystic thyroglossal duct.

Abbreviations
Anterior-Posterior (AP), Fine Needle Aspiration (FNA), Fine Needle Aspiration Cyst (FNAC), Human Thyrotropin (HT), Papillary Thyroid Cancer (PTC), Thyroid Function Test (TFT), Thyroid Imaging Reporting, and Data System (TIRADS), Thyroid Stimulating Hormone (TSH).

Acknowledgments
We are thankful to the entire management of Crystal Specialist Hospital (CSH), Akowonjo-Dopemu, Lagos-Nigeria, for the full support given in the documentation of this case report.

Authors’ contribution
a. Study planning: AAM, QKK, OAO, BAA
b. Case report: AAM, EED, OSG
c. Follow up: AAM, OAA, OS, EED
d. Interpretation: AAM, QKK, BAA
e. Manuscript writing: AAM, OAO, EED
f. Manuscript revision: AAM, OSG, OS
g. Final approval: AAM, QKK, OAA, OAO, EED, BAA, OSG, OS
h. Agreement to be accountable for all aspects of the work: AAM, QKK, OAA, OAO, BAA, EED, OSG

Funding
No funding was received.
Availability of data and materials
Figures of this case report are available as part of the article, and no additional image files are required.

Consent for publication
In line with the 1975 Helsinki Declaration on patient right’s consent was sought and obtained from the patient, and ethical approval was granted by the committee of Crystal Specialist Hospital. No patient name-tag or any form of confidential personal information is compromised in this manuscript; a copy of the approval letter is available on demand by the editor. The subject was later referred to an endocrinologist for assessment on goitre profiling.

Competing interests
None, declared.

Publisher’s Note
NHRS remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. The publisher shall not be legally responsible for any types of loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Author information
1Dr. Afodun Adam Moyosore, Ph.D., Senior Lecturer, Department of Anatomy
2Quadri Khadijah Kofoworola, M.Sc., Physiology, Research Scientist
3Dr. Okesina Akeem Ayodeji, Ph.D., Lecturer, Department of Anatomy
4Dr. Ojewale Abdulfatai Olakunle, Ph.D., Lecturer, Department of Anatomy
5Dr. Bakare Airat Adeola, Ph.D., Lecturer, Department of Anatomy
6Dr. Eze Ejike Daniel, Ph.D., Senior Lecturer, Department of Physiology
7Ojuolape Samsudeen Gbenga, M.Sc., Lecturer, Department of Anatomy
8Dr Odoma Saidi, Ph.D., Lecturer, Department of Pharmacology and Toxicology
1,2,4,6,7,8Kampala International University, Uganda
2,8University of Lagos, Lagos, Nigeria

References
11. Gharib H, Papini E. Thyroid nodules: Clinical Importance, Assessment and Treatment.


24. Surks MI, Ortiz E, Daniels GH, Sawin CT, Col NF, Cobin RH, Frankly JA, Hershman JM. Subclinical thyroid disease: scientific review and guidelines for diagnosis and management. JAMA 2004;291:228-38. https://doi.org/10.1001/jama.291.2.228


27. Lin JD, Chao TC, Huang BY. Thyroid cancer in the thyroid nodules evaluated by ultrasonography and fine-needle aspiration cytology. Thyroid 2005;15: 708-17. https://doi.org/10.1089/thy.2005.15.708


https://doi.org/10.1016/0002-9343(80)90205-
3


https://doi.org/10.1067/msy.2001.118387

https://doi.org/10.2214/ajr.180.6.1801723


https://doi.org/10.1210/jc.2003-031000