INTRODUCTION
With increasing public awareness of esthetics, dental professionals are finding ways to improve the appearance of the teeth which in turn add beauty to the face. Maxillary anteriors are the teeth mostly displayed during the smile and play an important role in the overall facial esthetics and influence the social attractiveness.\(^1\) Besides their alignment; the shape, size, colour and symmetry of the maxillary anteriors are important considerations to the clinician.\(^2\) As maxillary central incisors occupy 50% of the apparent dimension of all the anteriors, it has dominant effect in the smile esthetics.\(^3\) The width height ratio of maxillary incisors has been widely studied to harmonize it with the smile. It is believed to play a vital role in the aesthetic outcome of the maxillary anterior teeth. As mesiodistal dimension is relatively stable, width-height ratio of a tooth often serves as a guide in restoration of reduced crown height due to trauma or attrition. Hence, this ratio is quite important for restorative planning, prosthetic replacement,esthetic gingival surgical procedure, and during finishing stage of orthodontic treatment. In search for an ideal ratio, several authors proposed various ratios- 0.72,\(^4\) 0.76,\(^5\) 0.78,\(^6\) 0.79,\(^7\) 0.80,\(^8\) 0.85,\(^9\) 0.85 - 0.86,\(^10\) 0.89-0.91.\(^11\) Many studies had correlated the dimensions of maxillary incisors with the inter-pupillary distance, inter-canthal distance, inter-alar distance, intercommisural width, and bizygomatic width.\(^12\) Less emphasis has been given in the vertical dimension of face when correlating it with the dimensions of central incisor. This study aimed to find out the ratio of width to height of the maxillary central incisor in a Nepalese sample and correlate it with the lower anterior facial height.
class I canine relation with well aligned maxillary central incisors, no midline diastema, no gingival recession, no gingival inflammation and no attrition of the incisal edge as seen clinically. They were excluded if they had undergone prior orthodontic or restorative therapy involving maxillary central incisor. Informed consent was obtained from all the participants prior to the enrollment.

Lower anterior facial height was measured as the distance between subnasion and the lowermost border of the soft tissue chin. It was measured with a digital caliper with patient seated upright in the chair with jaw in relaxed position. Each participant was asked to recline in the dental chair and intra-oral frontal photograph was taken with cheeks retracted with the help of photographic retractor by single investigator (RG). A Nikon D 5100 DSLR camera was used with the lens of the camera perpendicular to the labial surface of the maxillary central incisors taking care of the rotation of patient’s head. After the photographs were taken, they were uploaded in the computer and the dimensions of the teeth measured with the software ImageJ 1.49 (freely available at http://imagej.nih.gov/ij/). Calibration was not important as only the ratio of the dimensions of the central incisor was taken into consideration. All the data were entered in Excel 2013 and statistical analysis was done with SPSS version 20. All the measurements were made by a single investigator (RG).

Measurements of lower anterior facial height and dimensions of maxillary central incisors were repeated in randomly selected 25 samples at least two weeks from the first measurements. Descriptive statistics were calculated for all measurements along with 95% confidence interval. Gender differences were compared with independent t-test. Correlation analysis was done to find the correlation between the width-height ratio of maxillary central incisor and the lower anterior facial height.

RESULTS
This study included 100 samples with 50 males and 50 females. The mean age was 22.23 ± 1.99 years. Kolmogorov-Smirnov and Shapiro-Wilk tests were done to check the distribution of lower anterior facial height and width-height ratio of maxillary central incisors. The p values were above 0.05 indicating the normal distribution of these variables. Twenty-five samples were randomly selected and the lower anterior facial height as well as width-height ratio was re-measured. Intra-class correlation coefficient was found to be 0.92 and 0.98 for width-height ratio and lower anterior facial height respectively showing excellent reliability.

Mean WH ratio of maxillary central incisor was 0.87 and 0.88 for right and left side respectively. Paired t-test showed no statistically significant difference in the width-height ratio of maxillary central incisor between right and left side (Table 1). Hence, average of right and left sides were derived for further comparisons.

Figure 1. Scatter plot demonstrating the relationship between LAFH and WH ratio.

Mean WH ratio of maxillary central incisor was found to be 0.86 for male and 0.89 for female which is statistically insignificant difference when compared with independent sample t-test (Table 2 and 3). Mean LAFH was 65.66 ± 4.70 mm and 60.25 ± 3.92 mm for male and female respectively showing significantly more LAFH in male than female (Table 2). The relationship between LAFH and WH ratio was evaluated with scatterplot (Figure 1). LAFH showed negligible correlation (Pearson’s coefficient of -0.15) with WH ratio and there was not sufficient evidence (p= 0.142) to suggest this correlation as well.

DISCUSSION
This study aimed to find out the width-height ratio of maxillary central incisor and its association with lower anterior facial height. The size of maxillary central incisor has been extensively studied in extracted teeth, study models, clinically as
As well as photographically. Also its dimensions have been correlated with the various facial landmarks guiding clinicians for esthetic planning of the anterior dentition. The mean WH ratio in this study was found to be 0.86 and 0.89 for male and female respectively. The ratio was higher as compared to the study done by Olsson et al, Magne et al, Sandeep et al, Sterrett et al, Hasareisoglu et al (this study).

Maxillary anterior teeth size varies among races and

Table 1. Paired t-test for the difference between WH ratio of right and left side.

<table>
<thead>
<tr>
<th>Teeth</th>
<th>Mean</th>
<th>SD</th>
<th>SE</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>t</th>
<th>df</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(11-21)</td>
<td>-0.007</td>
<td>0.044</td>
<td>0.004</td>
<td>-0.016</td>
<td>0.002</td>
<td>-1.586</td>
<td>99</td>
<td>0.116</td>
</tr>
</tbody>
</table>

11: Maxillary right central incisor
21: Maxillary left central incisor

Table 2. Descriptive statistics for lower anterior facial height and WH ratio

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Min</td>
</tr>
<tr>
<td>LAFH</td>
<td>65.66</td>
<td>4.70</td>
<td>56.20</td>
</tr>
<tr>
<td>WH ratio</td>
<td>0.86</td>
<td>0.07</td>
<td>0.67</td>
</tr>
</tbody>
</table>

LAFH: Lower anterior facial height
WH ratio: Width-height ratio of maxillary central incisor
SD: Standard deviation
Min: Minimum
Max: Maximum

Table 3. T-test for the difference between WH ratio between male and female.

<table>
<thead>
<tr>
<th></th>
<th>t</th>
<th>df</th>
<th>Sig. (2-tailed)</th>
<th>Mean Difference</th>
<th>Std. Error Difference</th>
<th>95% Confidence Interval of the Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male-female WH ratio</td>
<td>-1.850</td>
<td>98</td>
<td>0.067</td>
<td>-0.028</td>
<td>0.015</td>
<td>-0.059</td>
</tr>
</tbody>
</table>

Table 4: Comparison of WH ratio of maxillary central incisor in various population.

<table>
<thead>
<tr>
<th>SN</th>
<th>Author</th>
<th>Population</th>
<th>Mean Male</th>
<th>Mean Female</th>
<th>Mean MF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Olsson et al⁵</td>
<td>Swedish</td>
<td>---</td>
<td>---</td>
<td>0.76</td>
</tr>
<tr>
<td>2</td>
<td>Magne et al⁶</td>
<td>White</td>
<td>---</td>
<td>---</td>
<td>0.78</td>
</tr>
<tr>
<td>3</td>
<td>Sandeep et al⁷</td>
<td>South Indians</td>
<td>0.80</td>
<td>0.79</td>
<td>0.79</td>
</tr>
<tr>
<td>4</td>
<td>Sterrett et al¹⁰</td>
<td>Georgians</td>
<td>0.85</td>
<td>0.86</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>Hasanreisoglu et al¹¹</td>
<td>Turkish</td>
<td>0.89</td>
<td>0.91</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>Tsukiyama et al⁴</td>
<td>Asian (Japanese)</td>
<td>---</td>
<td>---</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>White (Swedish)</td>
<td>---</td>
<td>---</td>
<td>0.78</td>
</tr>
<tr>
<td>7</td>
<td>Radia et al¹⁸</td>
<td>British</td>
<td>0.84</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>8</td>
<td>Gyawali and Singh</td>
<td>Nepalese</td>
<td>0.86</td>
<td>0.89</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Maxillary anterior teeth size varies among races and
the gender differences is also noted as well.19,20 Males tend to have wider and longer maxillary anteriors as compared to female.10,11,21,22 This study compared the width-height ratio of maxillary central incisor, not the absolute value. The crown width-height ratio is considered as the most stable reference with less variation between the races and the genders.10,14,19 This study also showed no statistically significant difference when WH ratio was compared between male and female using t-test. Similar result was obtained when the WH ratio of maxillary central incisor was compared between sexes by Shahid et al14 in Pakistani sample, Sah et al16 in Central Chinese, Sterrett et al10 in Georgians, and Sandeep et al7 in South Indians. However, few studies discovered statistically significant difference in WH ratio of maxillary central incisor between male and female.17,23

The incisal edge of the incisors gradually show attrition with increasing age, as a result of which the clinical crown height decreases but the width is relatively stable. Knowing the ratio would guide the clinician to restore the vertical height if the width is preserved. Ideal ratio should be derived from unworn dentition as the width-height ratio significantly changes when it is measured in attrited dentition.4 This study excluded samples with significant attrition of incisal edge. Further, age of the sample was limited to 25 years which is comparable with the age range of similar reported studies.7,14

This study found negligible correlation between width-height ratio of maxillary central incisor and the lower anterior facial height. The shape and size of the incisors have been found to correlate with the various facial dimensions in the literature. Ratio of the width of the maxillary central incisor to bicuspid width was found to be 1:16 by Berry,24 to interpupillary line as 1:6.93 by Al-Kaisy et al,12 1:6.5 to 1:7 by Cesario et al,25 1:7.7 for male and 1:7.5 for female by Hasanreisoglu et al11; to the intercanthal distance by 0.618:226, 0.267:1.27 Also, regression equations have been derived for the estimation of the width of central incisor taking various facial measurements.28

Similarly, investigating into the vertical dimension, Radia et al18 proposed the ratio of the height of the central incisor to the total facial height (trichion to menton) to be 1:18 and, to the facial height (nasion to menton) as 1:12 but only as initial guide. They further warned the deliberate application of any such ratios as strong relationship could not be verified between maxillary central incisor proportion and facial proportion. Furtado et al29 found that none of the horizontal or vertical measurements of the face could predict the dimensions of maxillary central incisor crown.

CONCLUSION

- Mean Width-height ratio of maxillary central incisor was found to be 0.86 for male and 0.89 for female.
- No statistically significant difference in width-height ratio of maxillary central incisor when compared between sides and gender.
- Negligible correlation exists between width-height ratio of maxillary central incisor and the lower anterior facial height.
- This ratio would serve as a guide in esthetic enhancement of the maxillary anterior dentition, however psychosomatic norms of each individual should also be given priority.

REFERENCES

