A Study on Standard of Buffalo Meat Hygiene in Dharan

BHASKAR MANI ADHIKARI1,2*, RAJENDRA PRASAD SUBEDI1 and DILIP SUBBA1

1Central Campus of Technology, Hattisar, Dharan, Nepal
2National College of Food Science and Technology, Khusibu, Kathmandu, Nepal

Hygiene standard of buffalo meat in Dharan was assessed by microbiological analyses and field survey method. Ten samples of buffalo meat, knives, chopping board and hands of butchers were examined for total plate count (TPC), total coliforms, E. coli, Staphylococcus aureus, Salmonella and Shigella. Average of TPC, Coliforms, E. coli and S. aureus counts in meat were 3.59×10⁷, 2.06×10⁶, 1.69×10⁵ and 9.67×10³ cfu/g respectively. Salmonellosis was detected in 80% samples and all samples were Shigella positive. The average TPC count of chopping board, knives and hands were found to be 3.15×10⁶, 3.47×10⁵ and 2.01×10⁴ cfu/cm² respectively. The average Coliform, E. coli and S. aureus counts of chopping board were found to be 1.11×10⁴, 9.8×10³ and 6.2×10² cfu/cm². The average Coliform, E. coli and S. aureus counts of knives were found to be 1.31×10⁴, 1.66×10³ and 2.83×10² cfu/cm². The average Coliform, E. coli and S. aureus counts of the palms of butchers were found to be 1.95×10⁴, 1.66×10³ and 1.77×10² cfu/cm². Two chopping boards, three knives and three hands were found Salmonella free. Five chopping boards, three knives and two hands were detected for Shigella. The field survey of 31 meat shops showed that the hygiene condition of meat sold in Dharan was found unsatisfactory.

Keywords: Buffalo meat, Hygiene, TPC, Coliforms, S. aureus, Salmonella, Shigella

Introduction

The nature and level of microbial contamination in meat have important consequence in relation to public health, storage life and the type of spoilage of meat (Gracey and Collins, 1994). The microbiology of carcass meat is highly dependent on the conditions under which animals are reared, slaughtered and processed. The extent to which contamination occurs and the composition of the flora varies will depend on the type of spoilage of meat (Brown, 1982). The most important pathogens associated with meat include Salmonella, Staphylococcus aureus, Escherichia coli, Clostridium perfringens, Campylobacter jejuni, Listeria monocytogenes, Yersinia enterocolitica and Aeromonas hydrophila (Koutsoumanis and Sofos, 2004).

The prevalence and levels of bacteria on meat carcasses depend on a number of factors including the origin of the animal, sanitation procedures and hygienic practices employed during handling and processing and conditions of storage. Extremely high numbers of microorganisms are found in the animal's intestinal content, and it is expected that some will find their way to the surface of the carcass during the dressing operations. Micro organisms reach the carcass via butcher's hands, tools, clothing, water etc. The number can be proliferated during cutting and distribution (Wilson et al., 1981; Khedkar et al., 2003). Raw meat quality is often judged immediately as soon as possible. An ice box was used during the collection to discourage the growth of microorganisms. 25 gram of meat sample was aseptically transferred into meat mincer (National meat grinder, Model-MK-G10N, Matsusita Electric Ind. Company Ltd.) and 225 ml sterile distilled water was also added in the same machine and homogeneous mixture of sample was obtained. Before starting the mincer, it was thoroughly washed with clean water, distilled water and finally sterilization with 70% alcohol. Samples were serially diluted up to 10⁻⁷ dilution according to KC and Rai, (2000). Samples from hands of butcher, chopping block and knife were collected from 10 shops out of 31 meat shops. As per Harrigan and McCane, (1979) Cotton wool swabs of 4 cm length and 1.5 cm thickness were used and distilled water was used as diluent. Total plate count was determined by pour plate method according to Harrigan and McCane (1979) using plate count agar and distilled water as diluent. Coliform and E. coli count was determined by pour plate method according to Varadaraj (1993). Staphylococcus aureus enumeration was carried out according to Brown (1982) and Varadaraj (1993).

Materials and Methods

Duplicate destructive samples of buffalo meat having sample size of 250g from randomly chosen 10 places (out of 31 shops) were collected in the morning time of at 6-7 AM in sterile polythene bags without contacting by the collector and analyzed within 2 hrs of collection. Sample was processed immediately as soon as possible. An ice box was used during the collection to discourage the growth of microorganisms. 25 gram of meat sample was aseptically transferred into meat mincer (National meat grinder, Model-MK-G10N, Matsusita Electric Ind. Company Ltd.) and 225 ml sterile distilled water was also added in the same machine and homogeneous mixture of sample was obtained. Before starting the mincer, it was thoroughly washed with clean water, distilled water and finally sterilization with 70% alcohol. Samples were serially diluted up to 10⁻⁷ dilution according to KC and Rai, (2000). Samples from hands of butcher, chopping block and knife were collected from 10 shops out of 31 meat shops. As per Harrigan and McCane, (1979) Cotton wool swabs of 4 cm length and 1.5 cm thickness were used and distilled water was used as diluent. Total plate count was determined by pour plate method according to Harrigan and McCane (1979) using plate count agar and distilled water as diluent. Coliform and E. coli count was determined by pour plate method according to Varadaraj (1993). Staphylococcus aureus enumeration was carried out according to Brown (1982) and Varadaraj (1993).

*Corresponding author, E-mail: vaskarmani@gmail.com
Coagulase test was done for confirmation. *Salmonella* was detected according to the Varadaraj (1993) and Maafjen and stolle (2005) with some modifications as 20 gram grinded meat sample was placed in 80 ml sterile peptone water for pre enrichment and incubated at 37°C for 16-20 hrs followed by enrichment in Selenite F broth for 24 hr at 37°C. Then serial dilution was carried in distilled water. Further which was cultured on Bismuth Sulphite Agar at 37°C for 24 hr. Biochemical testing of colonies in Triple-sugar Iron Agar was done. *Shigella* was detected according to Harrigan and McCane (1979). A questionnaire was prepared to evaluate sanitary condition of meat shops and personal hygiene of butcher.

Results and Discussion

Microbiological quality of meat - The count obtained from meat samples, swabs of knives, swabs of cutting board and hands of butchers taken from ten different locations for the parameters total plate count (TPC), total coliform (TC), *E. coli*, *Staphylococcus aureus* are represented in Figure 1.

![Figure 1. Microbial counts of buffalo meat, knives, cutting board and hands of butcher](image)

Table 1. Detection of Salmonella and Shigella in Buffalo Meat, Chopping board, knives and hands of butchers

<table>
<thead>
<tr>
<th>Source</th>
<th>Salmonella</th>
<th>Shigella</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Meat Board Knives Hands</td>
<td>Meat Board Knives Hands</td>
</tr>
<tr>
<td>A</td>
<td>+ - + +</td>
<td>+ - + +</td>
</tr>
<tr>
<td>B</td>
<td>+ - + -</td>
<td>+ + - -</td>
</tr>
<tr>
<td>C</td>
<td>- - - -</td>
<td>+ + - -</td>
</tr>
<tr>
<td>D</td>
<td>+ - + +</td>
<td>+ + + -</td>
</tr>
<tr>
<td>E</td>
<td>+ - + +</td>
<td>- + + -</td>
</tr>
<tr>
<td>F</td>
<td>+ - + +</td>
<td>- + + -</td>
</tr>
<tr>
<td>G</td>
<td>+ + + -</td>
<td>+ + + -</td>
</tr>
<tr>
<td>H</td>
<td>+ - + +</td>
<td>- + + -</td>
</tr>
<tr>
<td>I</td>
<td>- - + -</td>
<td>- - - -</td>
</tr>
<tr>
<td>J</td>
<td>+ - + +</td>
<td>+ - + -</td>
</tr>
</tbody>
</table>

+ = Positive, - = Negative

for TPC of chopping board, knives and hands of butchers were found to be 3.15×10^4, 3.47×10^3 and 2.01×10^3 cfu/cm² respectively. The coliform, *E. coli* and *Staphylococcus aureus* counts of chopping board were found to be 1.11×10^3, 9.8×10^1 and 6.2×10^2 cfu/cm², respectively. The coliform, *E. coli* and *Staphylococcus aureus* counts of chopping knives were found to be 1.31×10^3, 1.66×10^2 and 2.83×10^1 cfu/cm². The coliform, *E. coli* and *Staphylococcus aureus* counts of the palms of butchers were found to be 1.95×10^3, 1.66×10^2 and 1.77×10^2 cfu/cm².

Altogether 80% meat samples were found to be *salmonella* positive, whereas *shigella* was detected in all samples. In case of *Salmonella* two samples of chopping board, three samples of knives and three swab samples of hands of butchers were found to be positive. Out of ten swab samples, five samples of chopping board, three samples of knives and two samples of hands were found positive for *Shigella*.

The data showed higher number of microbes on meat samples which might be due to other contaminating sources also. The cross contamination from these sources could not be ignored. Selling of intestinal and respiratory tract along with the meat and handling by same man with same cutting knives can spread the Coliforms and other microbes. The prevalence of *Salmonella* and *Shigella* in knives, chopping blocks and hands signify that they are the main vector for its distribution.

Microbiological analysis showed heavy contamination of knives, chopping blocks and hands. Because of varied sources, the kinds of microorganisms likely to contaminate meat are many. This directly reflects highly polluted and unhygienic conditions. The data showed higher number of microbes on meat samples which might be due to other contaminating sources also. The cross contamination from these sources could not be ignored.

Selling of intestinal and respiratory tract along with the meat and handling by same man with same cutting knives can spread the Coliforms and other microbes. The prevalence of *Salmonella* and *Shigella* in knives, chopping blocks and hands signify that they are the main vector for its distribution.
Involvement of **Salmonella** (Anonymous, 2003; Koutsoumanis and Sofos, 2004), but EU standards for meat require standards of cut meat for retail sale and further processing. Than the maximum limit of \(5 \times 10^3/g\) of EU microbiological of the samples collected from the market was found higher than the EU standard for fresh meat i.e. \(5 \times 10^6/g\). The microbiological standard of cut meat for retail sale and further processing i.e. \(5 \times 10^3/g\). The total microbiological standard was also found greater than the EU microbiological standard for retail cut meat i.e. \(5 \times 10^6/g\). It was also greater than the Oregon state microbiological standards of \(5 \times 10^6/g\). It was also greater than the inspected German quality meat standards of \(< 5.0 \times 10^6/g\). The total **Coliform** count of the analyzed sample was also found greater than the EU microbiological standard of cut meat for retail sale and further processing i.e. \(5 \times 10^6/g\). The **E. coli** count was also found to be higher than the Oregon state microbiological standards of maximum 50/g. The average **Staphylococcus aureus** count of the samples collected from the market was found higher than the maximum limit of \(5 \times 10^5/g\) of EU microbiological standards of cut meat for retail sale and further processing. EU standards for meat require **Salmonella** negative in 25 gm (Anonymous, 2003; Koutsoumanis and Sofos, 2004), but **Salmonella** was also detected to be present in the meat. Taking the reference of microbial standards of Europe and United States, the average value for TPC was found to be higher than the inspected German quality meat standards referred for cutting and packaging plant which is less than \(5 \times 10^6/g\). It was also greater than the Oregon state microbiological standard for fresh meat i.e. \(5 \times 10^6/g\). The total **Coliform** count of the analyzed sample was also found greater than the EU microbiological standard of cut meat for retail sale and further processing i.e. \(5 \times 10^6/g\). The **E. coli** count was also found to be higher than the Oregon state microbiological standards of maximum 50/g. The average **Staphylococcus aureus** count of the samples collected from the market was found higher than the maximum limit of \(5 \times 10^5/g\) of EU microbiological standards of cut meat for retail sale and further processing. EU standards for meat require **Salmonella** negative in 25 gm (Anonymous, 2003; Koutsoumanis and Sofos, 2004), but **Salmonella** was also detected to be present in the meat.

Sanitary condition of Buffalo meat shops of Dharan- It was found during the field survey that all meat sellers control the flies manually. 16.13 % of the butchers clean their shops 2-4 times only in a week. Further 74.12 % of the shops used water for cleaning, 22.58 % used soap or detergent powder as sanitizing agent. Few (3.22%) used cloth for the cleaning purpose. 90.32 % butchers did not use apron while cutting and selling meat. All butchers of Dharan cleaned chopping block by scraping with knife. 26 butchers cleaned their knives before use while 16.13 % denied any cleaning of knives before processing. From the survey, 16.13 % of the shopl’s atmosphere was found dirty. Total 77.42% of the shops did not have any fencing to protect the meat from dogs and rodents. Only 9.67% sold meat on cemented platform. 45.16% sold meat on the wooden table while 32.26% used plastic sheet and 12.9% used metal sheet for serving meat in the shop. When asked about leftovers, 29.03% shops pretended to keep the meat in refrigerator but 93.55 % shops did not use refrigerator while 35.49% sold the meat selling the following day. 29.03% served leftover meat as it is and only 6.45 % said they dump the leftovers.

It was observed that no ante-mortem inspection of animals and postmortem inspection of carcasses meat and viscera were carried out. 64.52% of the butchers were unaware of zoonoses. Altogether, 70.97 % denied having any idea of the Meat Act. Similarly, 48.39 % of the butchers felt the necessity of slaughterhouse. When the butchers were asked about their knowledge about meat borne diseases and meat rules, 12.9 % denied having any idea about zoonoses, and 20 out of 31 butchers replied that meat was not a source of diseases for the human. 22 out of 31 informed that they were not familiar with the meat acts and rules.

Rickshaw (41.94%) was found to be most prominent transportation vehicle. Only 9.67% used hand board for transporting meat from slaughter site. 25.81 % used four-wheeler for the purpose and 22.58 % carried meat themselves. 67.74 % shops do not possess toilet facility nearby their shops. All butchers utilized previously reserved water for washing of meat.

Altogether, 32.26 % of butchers sold animal hide on slaughtering site while 6.45 % butchers sold the hide alongside with meat and 3.22% sold the meat without de-hiding. Feet of the slaughtered animal were found alongside with the meat of the 32.26% shops while 29.03% sold them away from shop. In 19.35 of the shops viscera was placed on table along with the meat, while 51.61 % butchers dealt with the viscera away from the meat shop. Among them, 45.16% were found using same knife for the meat and viscera.

From the survey it was found that the hygiene in the vicinity of meat shop was quite unsatisfactory. The butchers and sellers seemed to be ignorant about the basics of slaughter hygiene and good manufacturing practice. 18 shops informed that they did not handle hide of slaughtered animal and there were 14 shops which procured prepared carcass from other butchers. There is high chance of contamination of meat with feet of slaughtered animal. 32.26% meat sellers sold the feet placing them together with meat, while feet were found separately placed in 29.03% of the meat shops. 51.61% sold the viscera farther away from shop. The access of houseflies
to meat was apparent in all shops as the meats were sold in open environment.

Lack of cleanliness of the utensils, knives, etc. was among the reasons for the poor hygienic quality of the meat marketed in Dharan. The butchers were unaware of zoonoses and meat act. Practice of ante-mortem and post-mortem inspection was totally lacking. These survey findings are comparable with the study results of Joshi and Olesen (1999). They reported that the majority of butchers (64.9%) of Nepal lack awareness about meat borne disease, meat transportation was done by rickshaw, and only 14.29% of the meat shops had refrigeration facility.

Conclusion

All the buffalo meat samples were found to contain higher microbial load than prescribed standards of Europe and United States. The bacterial counts of meat samples were found to be high which might be due to poor sanitary condition of meat shop, handlers and slaughtering premises. Presence of *E. coli* indicated that the meat might be contaminated by the visceral content. Except two meat samples all were found to contain *Salmonella* Thus the study showed that degree of contamination is dependent upon the hygienic condition of those localities and the way of handling, cutting and preparing meat. All the findings of survey suggest about the unhygienic and unscientific method of handling, lack of sanitation and knowledge of micro organisms resulting higher number of contamination. The sanitary condition need to be improved. The government must develop microbiological standards of fresh meat and urgently put them in practice. The meat act must be implemented effectively. The control agency must be vigilant. Awareness programs for butchers and meat sellers also must be launched.

References

