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ABSTRACT

Time series models are used in river hydrology for synthetic generation. The development of 
such a model, namely deseasonalized Autoregressive Moving Average (ARMA), for generation 
of decadal (10-day) flows of the Brahmaputra River in Bangladesh is described. The model 
was fitted following systematic stages of identification, estimation and diagnostic checking 
of model building. A negative power transformation for the Brahmaputra flow was found to 
be necessary for model construction. The seasonality of the flow was removed by Fourier 
analysis using 5 harmonics for decadal means and 13 harmonics for standard deviations. The 
fitted model was ARMA (1, 3) having one autoregressive parameter and three moving average 
parameters. The validation forecasts made with the model indicated that the deseasonalized 
ARMA model could capture the decadal variability of the Brahmaputra flow reasonably well. 
Two hundred synthetic flow sequences, each with a length of 50 years, were generated using 
this model to further validate and verify the model. The fitted ARMA model was found to be 
capable of preserving both short-term statistics (variance and autocorrelation) and long-term 
statistics (Hurst coefficient and rescaled adjusted range) of the historic Brahmaputra flow. 
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1. INTRODUCTION

Time series models are popular and widely used 
tools in stochastic river hydrology throughout 
the world, mainly for medium-range forecasting 
and generation of synthetic flows (McKerchar 
and Delleur, 1974; Delleur and Kavvas, 1978; 
Govindasamy, 1991; Hipel and McLeod, 1994; 
Papamichail and Georgiou, 2001; Mondal and 
Wasimi, 2005a, 2005b, 2006, 2007a). Synthetic 
data are now widely used in water resources 
planning and simulation studies throughout 

the developed nations. Typical uses include 
estimation of command/service area of a 
water development project/option, sizing of 
water retention structures, evaluation of risk-
based performance indicators for water supply, 
setting a reservoir/barrage operation policy, etc. 
Mondal and Wasimi (2007b) and Mondal et 
al. (2010) have recently used two such models 
in risk-based evaluation of the Ganges and 
Brahmaputra water developments, respectively, 
in meeting future water demands within 
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Bangladesh. Time series models of univariate 
and multivariate, periodic and non-periodic, 
and seasonal and non-seasonal types are in use.

There are a number of commonly used 
univariate models for seasonal forecasting and 
data generation, such as exponential smoothing, 
Markov models, Holt-Winters method, Box-
Jenkins multiplicative Seasonal Autoregressive 
Integrated Moving Average (SARIMA) class 
of models, deseasonalized models, periodic 
models, and disaggregation models. The 
selection of an appropriate model for analyzing 
a particular problem depends on many factors, 
such as, number of series to be modeled, 
modeling costs, required accuracy, ease of use 
of the models, ease of interpretation of the 
results, etc. In the published literature (Newbold 
and Granger, 1974; Hipel and McLeod, 1978; 
Pankratz, 1983; Chatfield, 1996), it is noted 
that, when the number of series to be modeled 
is relatively few and a large expenditure of time 
and effort can be justified, as in the case of the 
Brahmaputra River, the Box-Jenkins method 
(SARIMA) should generally be preferred. This 
choice is due to its inclusion of a family of 
models which can be fitted to a wide variety of 
time series processes. An inherent advantage of 
the SARIMA family of models is that only few 
model parameters are required for describing 
time series which exhibit non-stationarity 
both within and across seasons. Some useful 
applications of these models in seasonal river 
flow forecasting are reported in McKerchar 
and Delleur (1974), Panu et al. (1978), Cline 
(1981), Govindasamy (1991), Irvine and 
Eberhardt (1992), Sidhu (1995), Papamichail 
and Georgiou (2001), Mondal (2005) and 
Mondal et al. (2007).

In the case of SARIMA model, seasonal and/or 
non-seasonal differencing is applied to remove 
the intra- and/or inter-year non-stationarity, 
respectively. Kavvas and Delleur (1975) have 
shown, both from analytical and empirical 

results, that seasonal and/or non-seasonal 
differencing, although very effective in the 
removal of hydrologic periodicities, distorts the 
original spectrum, thus making it impractical 
or impossible to fit an Autoregressive Moving 
Average (ARMA) model for hydrologic 
simulation or synthetic generation. McKerchar 
and Delleur (1974) and Delleur et al. (1976) 
have also shown that forecasting capabilities of 
seasonally differenced models may be impaired 
by the fact that they may not take into account 
the variation in the seasonal standard deviations. 
In addition, non-seasonal differencing does not 
preserve the seasonal structure in forecasting.

When simulation, as well as forecasting, is an 
objective, another class of hydrologic models 
called structural models can be used (see for 
example, Tao and Delleur, 1976; Salas et al., 
1981; Vecchia, 1985; Hipel and McLeod, 1994). 
This class of models is suitable for seasonal 
hydrologic time series which exhibits an 
autocorrelation structure that depends not only 
on the time lag between observations but also 
on the season of the year, and which except for 
some random variation possesses second-order 
stationarity within individual seasons across 
years (Hipel and McLeod, 1994). There are 
two types of structural models – deseasonalized 
and periodic. In deseasonalized modeling, the 
seasonal component of the time series to be 
modelled is removed by first subtracting each 
seasonal mean from the corresponding seasonal 
observations, and then dividing by the respective 
seasonal standard deviation (if necessary). An 
appropriate ARMA model is then fitted to the 
resulting deseasonalized time series (Lungu 
and Sefe, 1991; Hipel and McLeod, 1994). In 
periodic modeling, the model parameters, as 
well as model types and orders, are allowed 
to vary depending on the season of the year. 
The advantage of a periodic model is that it 
can account for variability in seasonal standard 
deviations and correlations that a SARIMA 
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model cannot (Delleur and Kavvas, 1978; Hipel 
and McLeod, 1994).  However, a potential 
drawback of using a periodic model in an 
application is that the model often requires the 
use of a substantial number of parameters.

In this paper, we develop a deseasonalized 
ARMA model for generation of decadal flow 
of the Brahmaputra River at Bahadurabad. The 
necessity for development of such a model 
emerges due to the fact that available records 
of the Brahmaputra flow within Bangladesh 
are of limited lengths for detailed evaluation 
of options for development of the Brahmaputra 
water in meeting future water demand in the 
Brahmaputra Dependent Area.

2. DESEASONALIZED ARMA MODEL

2.1 Formulation, identification, estimation 
and diagnostic checking

Let srx ,  represents a time series value in the 
r th year and s th season. For decadal data, s 
= 1,2, ..., 36. Year and season indices follow 
modulo s  arithmetic such that xr,s = xr±m, s 36m  
for decadal data, where m  is any real integer. If 
the variable srx ,  is skewed, then an appropriate 
transformation may be undertaken to make the 
transformed series, sry , , approximately normal. 
After transformation, the seasonal mean is 
removed from the series sry ,  by subtracting the 
seasonal mean m(s) from each observation and 
then dividing the result by the corresponding 
seasonal standard deviation s(s). Seasonal 
means and standard deviations can be obtained 
by parametric or non-parametric analysis. 
The non-parametric method requires many 
parameters to remove seasonality, particularly 
when a time series is weekly or decadal. The 
problem of requiring many parameters can be 
overcome by using the parametric method, 
which is based on the Fourier series approach 
(see Salas et al., 1988).

The parametric representation of m(s), denoted in 
general as )(ˆ sm  , can be obtained by:
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Fourier series coefficients, i  is the harmonic, 
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When S  is even, the last coefficients hA  and 
hB  are given by:
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When )(ˆ sm  of equation (1) is determined using 
all the harmonics hi ,,2,1=  , (i.e. all the 
coefficients iA  and iB ), )(ˆ sm  is exactly the 
same as m(s) for all values of Ss ,,2,1=  .

To find out the required number of harmonics, 
and corresponding Fourier coefficients, 
necessary for a good fit in equation (1), a 
cumulative periodogram test, which is a 
graphical test, is usually conducted. This test is 
the most accurate for selecting the number of 
significant harmonics (Salas et al., 1988). The 
test is carried out by computing first the mean 
squared deviation (MSD) of m(s) around m :

( ) ( )( )
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1

1 ∑
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	 (4)

MSD (m) is composed of the MSD ( i ) of each 
harmonic i , which is determined by:
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MSD ( i ) = )+(
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After computation of all the values of MSD (i), 
they are arranged in descending order so that 
MSD ( ih ) represents the ordered sequence, 1h  
being the harmonic with the highest MSD and 

hh  with the lowest MSD. iP , which is the ratio 
of the sum of the first i  MSDs to the MSD (m) , 
is then computed from:
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The plot of iP  versus i  is called the cumulative 
periodogram, which is composed of two distinct 
parts: a faster increasing periodic part and a 
slower increasing sampling part. The two parts 
are approximated by two smooth curves, the 
intersecting point of which provides the number 
of significant harmonics.

Let the deseasonalized series be written as:
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where nt ,,2,1=   and n  is the number of 
observations. An ARMA model is then fitted 
to the deseasonalized time series tz . The 
general equation of the ARMA model (Box 
et al., 1994) for a variable tz  is given by:

( ) ( ) tqtp aBzB θφ = 	 (8)

where the polynomials ( )Bpφ  and ( )Bqθ  are 
autoregressive (AR) and moving average (MA) 
operators of order p  and q , respectively, i.e.,

)1()( 2
21

p
pp BBBB φφφφ −−−−=  and 
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21

q
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ta  is a stochastic random shock component 
with zero mean, constant variance and no serial 
correlation (i.e., white noise).

The model selection process consists of three 
iterative stages: (i) model identification, (ii) 

model parameter estimation, and (iii) diagnostic 
checking of the model residuals. A detailed 
description of each of these stages can be 
found in Box et al. (1994). In the identification 
stage, the orders of AR and MA parameters are 
chosen from the autocorrelation function (ACF) 
and partial autocorrelation function (PACF) 
of the variable tz . In the estimation stage, 
maximum likelihood estimates of different 
model parameters are obtained. Stationarity 
and invertibility conditions of the AR and MA 
parameters, respectively, are checked at this 
stage. Mathematical definitions and physical 
interpretations of stationarity of AR and 
invertibility of MA parameters can be found in 
Delleur and Kavvas (1978), Vandaele (1997), 
and others. There are some additional statistical 
tools, such as Akaike Information Criterion 
(AIC, Akaike, 1974) and Bayes Information 
Criterion (BIC, Schwartz, 1978), which can 
be used to select the best model from several 
possible models.

In the diagnostic checking stage, a decision 
is made whether the selected model from 
the estimation stage is statistically adequate. 
For this, the model residuals are checked 
to determine whether they satisfy the 
assumptions of independence, normality, and 
homoscedasticity (constant variance). The 
most important of these assumptions is that, 
the random shocks from the estimated model 
are independent. Residual ACF is the basic 
analytical tool to test the null hypothesis of 
white noise residuals through either t- or χ2-test 
(Box and Pierce, 1970; Ljung and Box, 1978). 
Box et al. (1994) have further suggested the 
cumulative periodogram test for the detection 
of periodic patterns in a background of white 
noise.

The hypothesis that a given time series is 
normal can be tested through normal probability 
plot, detrended normal plot, Shapiro-Wilk 
test (Shapiro and Wilk, 1965), Lilliefors test 
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(Lilliefors, 1967), χ2-test, skewness test (Salas 
et al., 1988), etc. To check for violations of 
equality-of-variance assumption, scatter-plot of 
residuals against fitted values can be produced. 
If the spread of the residuals does not appear to 
be increasing or decreasing with the magnitude 
of the fitted values, the assumption of constant 
variance is met. Some informal techniques, such 
as, time series plot of residuals, over-fitting of 
the selected model and fitting models to subsets 
of data, often provide valuable information on 
adequacy of the model and reveal important 
clues on how an inadequate model can be 
reformulated. When the model residuals pass 
all these checks, the model is considered 
statistically adequate. In a situation where a 
model fails to pass any of the checks, the model 
is reformulated by changing its form/order or 
by choosing an appropriate data transformation, 
such as Box-Cox transformation (Box and Cox, 
1964).

2.2 Data generation

McLeod and Hipel (1978) developed an exact 
simulation procedure for the univariate ARMA 
model and its subsets. They suggested using 
a theoretically correct variance-covariance 
structure to initialize the generation process 
and to avoid systematic bias in the generated 
sequences. Suppose that it is required to 
generate N terms of an ARMA ( ), qp  model 
with innovations that are NID (0, 2

aó ). The 
data generation procedure (McLeod and Hipel, 
1978) is as follows:

(1) The theoretical auto-covariance function 
jγ  for )1(,,1,0 −= pj  , is obtained first. 

For this, the ARMA model is first written in the 
difference form and then multiplied by ktz −  and 

kta − , and the resulting equations are solved for 
jγ . The notation k  indicates a time lag.

(2) The random shock coefficients jψ  for 
)1(,,2,1 −= qj  , is then determined by 

equating the coefficients of like powers of B  
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B
Bz )(

)(
)( ψ

φ
θ

== .

(3) The variance-covariance matrix Δ of pz , 
1111 ,,,,,, +−−− qpppp aaazz   is formed as 

below:

( ) ( )
( ) ( )

)()(
,

qpqpqqjipqji

qpijqpji

+×+××−

×−×−












=∆ δψ

ψγ

where the ( ji, )th element and dimension of 

each partitioned matrix are indicated. The 
values of ji,δ  are 1 or 0 according to whether 

ji =  or ji ≠ , respectively. When 0<− ji , 
then ijji −− = γγ  and ji−ψ =0.

(4) The lower triangular matrix M is determined 
by Cholesky decomposition or any other matrix 
method such that

TMM=∆

where the notation T  indicates a matrix 
transpose.

(5) Two random sequences qpeee +,,, 21   and 
Npp aaa ,,, 21 ++  are generated, where both 

te  and ta  sequences are NID (0, 2
as ).
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Steps (5) through (8) are repeated for generation 
of every new series of length N .

3. APPLICATION OF THE MODEL

The Brahmaputra is a major trans-boundary 
river and contributes about two-thirds of the 
total dry season flows in Bangladesh. It plays 
an important role in overall socio-economic 
development of the country. An application 
of the above deseasonalized ARMA model 
was made to the decadal flow of this river 
at Bahadurabad. Before proceeding to the 
model application, a general description of the 
Brahmaputra River and its flow characteristics 
is given. 

3.1 The Brahmaputra River

The Brahmaputra River is one of the largest 
rivers in the world. It originates in the Jima 
Yangzong glacier near the Mount Kailash in 
the northern Himalayas. It has a long course for 
about 1700 km through the dry and flat region of 
southern Tibet.  Throughout this upper course, 
the river is generally known as the Tsang-Po 
(FAP 24, 1996a). At its easternmost point, the 
river bends around the Namcha Barwa peak. 
As the river enters Arunachal state of India, 
it is called Siang. The Brahmaputra appears 
in the Assam valley as the Dihang River. It 
flows for about 268 km through Arunachal 
state and 640 km through Assam. The Dihang 
is joined by the Dibang and the Lohit from 
the east near Sadiya in northeast Assam. From 
this point of confluence, the river is called the 
Brahmaputra. As Brahmaputra, the river flows 
through the entire stretch of Assam and sweeps 
round the Garo Hills and enters Bangladesh. In 
Bangladesh, the Brahmaputra flows southward 
for nearly 240 km before joining the Ganges at 
Goalanda (FAP 24, 1996b). Thus the total length 
of the Brahmaputra River is about 2,848 km, of 
which about 8.4% lies within Bangladesh.

The catchment area of the river is about 0.55 
Mkm2 stretching over Tibet, India, Bangladesh 
and Bhutan, of which about 8% is within 
Bangladesh (FAP 24, 1996b). However, this 
8% is equivalent to about 32% of the area of 
Bangladesh. A gauge station of the river is located 
at Bahadurabad, which is at 10 km downstream 
of the off-take of the Old Brahmaputra. The 
distance between Bahadurabad and Aricha is 
about 130 km. The width of the river varies 
spatially and temporally, and the overall width 
ranges from 6 to 14 km (FAP 24, 1996b).

3.2 Flow characteristics of the Brahmaputra 
River

Discharge data of the Brahmaputra are available 
for Bahadurabad station since April 1956. 
The data are missing for 18 months (October 
1963 to March 1964, and April 1971 to March 
1972). Inconsistencies have been detected in 
the BWDB discharge data for a period of 56 
months (August 1988 to March 1993) in the 
FAP 24 (1996a) report. The data for this period 
have been replaced with the data derived from 
the three rating equations suggested in FAP 24 
(1996a).

The Brahmaputra flow, on an average, reaches 
its peak during the second decade of July and 
trough during the last decade of February. From 
the second decade of June to the first decade of 
October, flows are much higher compared to 
the rest of the year. There is a strong seasonal 
pattern in the Brahmaputra flow, so the flow is 
intra-year non-stationary.

To check whether or not the flow is inter-year 
stationary, a total of 36 time series, one for each 
decade of each month of the year, was plotted. A 
linear regression line was superimposed on each 
of these plots. The slopes of the least-squares 
lines were found to be negative for the periods 
of May II, May III, Jun III, Aug I and Aug II, 
and positive for the remaining periods. Thus 
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the flow has in general increasing trends except 
some decades in the pre-monsoon and monsoon 
periods. However, the slopes of the increasing 
trend lines were generally low. The per year 
increase was found to vary between 0.10% for 
the second decade of June to 1.16% for the third 
decade of November of the respective decadal 
average flows. The values of the coefficient of 
determination (R2) of the trend lines were also 
low, 0 to 16.6%. Therefore, the small increasing 
trends found in some decades were ignored in 
subsequent analyses.

To see whether or not the annual hydrograph of 
the Brahmaputra River exhibits a trend in the 
annual peak or trough, the highest and lowest 
flows of each year were found out from the 365 
or 366 daily values. They can be found in Mondal 
et al. (2007). The analysis of the two extreme 
value series did not indicate the presence of any 
linear trend in either series. To check if there has 
been any temporal change in the annual peak 
and low flows, the dates of occurrences of the 
highest and lowest water levels were determined 
for each year. It is found that the median date 
of occurrence of peak flow is 30 July with a 
standard deviation of 36 days and the median 
date of occurrence of the lowest flow is 27 
February with a standard deviation of 13 days. 
Dividing the peak and low flow time series into 
two halves (each half with a 24-year length), it 
is found that there is no significant difference 
in the time of occurrence of either the peak 
discharge or the low discharge between the two 
halves of the available periods. Furthermore, no 
trend is found in the two time series of the dates 
of occurrences of the highest and lowest flows.

Decadal means and standard deviations 
of the Brahmaputra flow were found to be 
approximately proportional (see Mondal et al., 
2007). The existence of such proportionality 
indicates that a power or logarithmic 
transformation should be applied to the raw 
data before model construction. This conclusion 

is also justified from the fact that the skewness 
of all months except June and July decreases 
due to the natural logarithmic transformation 
as reported in Mondal et al. (2007). A common 
way of investigating the relationship between 
the average value, or expected level, of a 
variable and the variability, or spread, associated 
with it is to plot the values of spread and level 
for each period. If there is no relationship, the 
points would cluster around a horizontal line. 
Otherwise, we can use the observed relationship 
between the two variables to choose an 
appropriate transformation. To determine an 
appropriate power for transforming the data, 
we can plot, for each period, the logarithm of 
the median against the logarithm of the inter-
quartile range. Figure 1 shows such a plot for the 
Brahmaputra flow data. We can see that there is a 
fairly strong linear relationship between spread 
and level with a R2 value of about 95%. The 
slope of the least-squares line is about 1.20, so 
the power for the transformation is –0.20. After 
applying this power transformation, a spread-
versus-level plot was again obtained. No further 
relationship was evident from such a plot.

Figure 1: Spread versus level plot of the Brahmaputra flow 
at Bahadurabad

Normality checks of the negative power 
transformed data were made with normal 
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probability plots as well as with tests of 
normality. Both Kolmogorov-Smirnov’s 
test with Lilliefors significance correction 
(Lilliefors, 1967) and Shapira-Wilk’s test 
(Shapira and Wilk, 1965) indicated that the 
power transformation improved the normality of 
the data significantly. The box-and-whisker plot 
and the stem-and-leaf plot (Tukey, 1977) also 
indicated that the number of outliers/extremes 
reduces due to the transformation. Therefore, 
the negative power transformed data were used 
for model building in the following sections.

3.3 Fitting Deseasonalized ARMA model to 
the Brahmaputra flow

To fit a deseasonalized ARMA model, the 
decadal mean was subtracted from each decadal 
observation. The result was then divided by the 
corresponding decadal standard deviation to 
obtain the deseasonalized series. The 36 decadal 
means and 36 decadal standard deviations for 
the transformed decadal flows were obtained 
by the parametric method. The first 5 and 13 
harmonics were found to be significant for 
the decadal means and standard deviations, 
respectively. To identify the significant 
harmonics, the graphical criterion of separating 
the harmonics into the periodic and sampling 
variation parts from the plot of the cumulative 
periodogram, as outlined earlier, was followed. 
Figure 2 shows the cumulative periodogram for 
the decadal means.

Figure 2: Separation of the cumulative periodogram of 
decadal means into two parts: periodic (significant) 
and sampling variation (insignificant)

After removal of the seasonal component, 
autocorrelations and partial autocorrelations at 
different lags of the deseasonalized series were 
estimated and are given in Figure 3. It is seen  

Figure 3: ACF and PACF along with the 95% confidence limits 
of the deseasonalized, power transformed decadal 
flow of the Brahmaputra River at Bahadurabad

from the figure that the ACF has an exponentially 
decaying pattern and the PACF has significant 
values until lag 5, except for lag 2, with also 
a decaying pattern. These patterns indicate that 
the model can be a mixed model having both AR 
and MA parameters. After a few iterations, the 
model that appeared to be suitable was ARMA 
(1, 3). The estimated parameters of the fitted 
model are given in Table 1. It is seen from the 
last column of the table that three parameters 
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)ˆandˆ,ˆ( 211 θθφ  are significant at a 1% level of 
significance and the remaining parameter )ˆ( 3θ  
is significant at a 10% level of significance.

The residual ACF of the above ARMA model 
is shown in Figure 4, which does not give 
any indication of non-whiteness of the model 
residuals. The cumulative periodogram of the 
residuals is shown in Figure 5. This figure does 
not show any periodic pattern in the model 
residuals. The fitted deseasonalized ARMA 
model can be expressed with the following 
equation:

tt aBBBzB ˆ)05052.028031.020725.01()92880.01( 32 −−−=−     (10)

where tz  is the parametrically deseasonalized 
power transformed decadal flow of the 
Brahmaputra River. The total number of 

parameters in the deseasonalized ARMA model 
is 23 (5 harmonics for decadal means and 13 
for standard deviations, 1 AR coefficient, 3 MA 
coefficients, and 1 residual variance).

3.4 Model validation

To evaluate the performance of the model, 
validation forecasts were generated from the 
model. The procedures of forecast generation 
from the model are described in Mondal et 
al. (2007). The parameters of the model were 
estimated with the data up to February 1997 
and the model was validated with the data from 
March 1997 to February 2005 using one-step-
ahead validation forecasts. One-step-ahead 
validation forecasts from the deasonalized 
ARMA (1, 3) model along with the observed 
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Table 1:	 Estimated values, standard errors, t-statistics, etc. of different parameters of the 
deseasonalized ARMA (1, 3) model

Parameter Estimated Value Standard Error of Estimate t-ratio Approximate Probability

1̂φ
0.92880 0.01557 59.64 0.000

1̂θ
0.20725 0.02908 7.13 0.000

2θ̂
0.28031 0.02773 10.11 0.000

3̂θ
0.05052 0.02651 1.91 0.057

Note:	 The model had residual variance, standard error, log-likelihood, AIC and BIC values of 0.4193, 0.6475, -1680, 3368 and 
3389, respectively, in the deseasonalized scale.

Figure 4: The residual ACF along with the 95% confidence 
limits of the fitted deseasonalized ARMA model

Figure 5: Cumulative periodogram with the 95% large-
sample confidence limits for the residuals of the 
deseasonalized ARMA model
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flows are given in Figure 6. It is seen from 
the figure that the fitted model captures the 
observed decadal pattern of the Brahmaputra 
flow reasonably well. The model performs very 
well during the dry season for which synthetic 
flow would basically be required.

To check how a disturbance in the current time 
period affects the current and future flows, the 
deseasonalized ARMA model was written in 
random shock form and the shock coefficients 
were estimated. A plot of the coefficients against 
lead time is shown in Figure 7. It is evident from 
the figure that a disturbance in a decade of a year 
has the most influence on flow of that decade 

of that year. The influence of the disturbance 
on future flows reduces with the increase in 
lead time. This is also understandable from a 
physical point of view. For example, if there is 
some rain in a time period, this rain will have 
the most influence on the current time period 
river flow. The effect of rain on river flow will 
decrease gradually as time passes away. This 
physical explanation of the behavior of the 
deseasonalized ARMA model gives it a strong 
basis for use in river hydrology. The RMSE and 
MAE of the one-step-ahead forecasts are given 
in Table 2.
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Figure 6: One-step-ahead forecasted flows along with the observed flows from the first decade of March 1997 to the last 
decade of February 2005

Figure 7: The influence of the current period disturbance on current and future flows
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 4. GENERATION OF SYNTHETIC FLOWS

The fitted deseasonalized ARMA model was 
employed to generate decadal flows of the 
Brahmaputra River. The general algorithm 
described earlier for exact simulation with an 
ARMA model was used for the data generation. 
Portable independent normal variables, e ’s, 
required in such simulations were generated 
using the SPSS (1995) package, with different 
random number seeds for different sequences. 
Two hundred synthetic traces, each trace with 
a length of 50 years, were generated with 
the developed model. For each generated 
sequence, the variance, and the lag-1 to lag-
7 autocorrelations were computed. The mean 

values and confidence limits of each of the six 
parameters were then obtained from the 200 
values each, and are given in Column 4 of  Table 3.

Stedinger and Taylor (1982) suggested two 
diagnostics – model verification and validation 
– in addition to the conventional diagnostic 
checks to evaluate the adequacy of a stochastic 
model. According to these authors, model 
verification is the demonstration that the 
developed model produces flows with the 
characteristics predicted by its theoretical 
prototype. For this test, the theoretical variance 

0γ  was obtained by multiplying tz  in equation 
(7) with tz  and then taking expected values. The 
theoretical covariance kγ  at lag k  was obtained 
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Table 2:	 RMSE and MAE (m3/s) of one-step-ahead validation forecasts of the deseasonalized 
ARMA model fitted to the Brahmaputra flow

Decade RMSE MAE Decade RMSE MAE

Jan I
Jan II
Jan III

729
388
404

568
292
269

Jul I
Jul II
Jul III

6243
6830
8309

4937
4934
6576

Feb I
Feb II
Feb III

406
363
692

300
279
412

Aug I
Aug II
Aug III

8837
9612
9559

7562
7826
7602

Mar I
Mar II
Mar III

367
299
962

267
238
659

Sep I
Sep II
Sep III

8840
7940
5876

5929
5248
4537

Apr I
Apr II
Apr III

1898
1436
2306

1175
1192
1815

Oct I
Oct II
Oct III

4923
4339
4423

4276
4052
3423

May I
May II
May III

4443
3010
2516

3269
2320
1874

Nov I
Nov II
Nov III

6232
4718
5396

3250
2407
2689

Jun I
Jun II
Jun III

6699
8038
7203

5649
6014
5766

Dec I
Dec II
Dec III

1179
1379
831

792
798
595
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by multiplying tz  with ktz −  and then taking 
expected values. The solution process involved 
a total of ten equations with ten unknowns. 
Both the theoretical and observed variances, 
and the lag-1 to lag-7 autocorrelations are 
given in Table 3. It is evident from the table 
that the theoretical, as well as the observed, 
values of all the parameters are well inside the 
95% confidence limits of generated values.  It 
can therefore be concluded that the generated 
sequences exhibit short-term characteristics, 
which are statistically indistinguishable not 
only from the theoretical prototype but also 
from the historical observations.

Stedinger and Taylor (1982) described model 
validation as the demonstration that the 
generated sequences preserve the long-term 

statistics. For this, the Hurst coefficient and 
Rescaled Adjusted Range (RAR) (Salas et 
al. 1979) were estimated for each of the 200 
sequences, as well as for the historical sequence 
of the Brahmaputra flows. These are reported 
in Table 4. It is seen from the table that the 
historical sequence has a Hurst coefficient of 
0.669, whereas the generated sequences have 
an expected value of 0.667 with the 95% large 
sample confidence limits of 0.587 to 0.747. The 
observed sequence has a RAR of 90.85, and 
the generated sequences have a mean value of 
95.98 with the 95% large sample confidence 
limits of 42.79 to 149.17. The probability of 
exceedence of the historical Hurst coefficient 
and RAR was found to be 48.0% and 50.5%, 
respectively. The exceedence probability is 
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Table 3:	 Observed, theoretical and generated variances, and lag-1 to lag-7 autocorrelations, 
for the deseasonalized decadal flows

Parameter Observed Theoretical Generated

Variance 0.982 0.998 0.977 (0.803  1.151)

Lag-1 autocorrelation 0.741 0.748 0.741 (0.694   0.789)

Lag-2 autocorrelation 0.548 0.562 0.551 (0.472   0.630)

Lag-3 autocorrelation 0.486 0.501 0.490 (0.402   0.577)

Lag-4 autocorrelation 0.459 0.465 0.453 (0.364   0.542)

Lag-5 autocorrelation 0.431 0.432 0.419 (0.327   0.512)

Lag-6 autocorrelation 0.385 0.401 0.388 (0.293   0.482)

Lag-7 autocorrelation 0.347 0.373 0.360 (0.262   0.457)

Note: Values within parentheses in the last column are 95% confidence limits

Table 4:	 Hurst coefficient and Rescaled Adjusted Range (RAR) for both observed and generated 
flows of the Brahmaputra River

Parameter Observed Generated Exceedence Probability

Hurst coefficient 0.669 0.667 (0.587  0.747) 0.480

RAR 90.85 95.98 (42.79   149.17) 0.505

Note: Values within parentheses in the third column are 95% confidence limits
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greater than the usual threshold level of 5% or 
10%. Therefore, the developed deseasonalized 
ARMA model can be considered to have the 
capability of preserving the important long-
term statistics of the Brahmaputra flow. Earlier, 
fitting ARMA models to a number of different 
geophysical time series, Hipel and McLeod 
(1978, 1994), McLeod and Hipel (1978), 
Salas et al. (1988), Mondal (2005) and others 
have also demonstrated that these models can 
preserve the long-term statistics.

From the discussions above in this section and 
also from the results in Tables 3 and 4, it can 
be concluded that the generated flows with 
the deseasonalized ARMA model have both 
short- and long-term statistical characteristics 
similar to the observed flows. Such flows have 
already been used in a risk-based evaluation of 
Brahmaputra water development in meeting 
future water demand (Mondal et al., 2010). 
Figure 8 shows one sequence, out of 200 
sequences, of the discharge data generated with 
the ARMA model. Figure 9 shows the plot of a 
small portion (one year) of the generated data 
for 5 sequences, so that we can get a view of the 
sequences together in a plot and have a visual 
impression about the underlying sampling 
variability.

Figure 8: One long time series, out of 200, of generated 
discharge data

Figure 9: Time series plot of generated data for one year (5 
sequences are shown)

5. CONCLUSIONS

A deseasonalized ARMA model is fitted to the 
decadal (10-day) flow of the Brahmaputra River 
at Bahadurabad. The basic use of this model 
is to generate synthetic flows. Comparing the 
one-step-ahead validation forecasts with the 
observed flows using graphical plot as well as 
RMSE and MAE criteria, the deseasonalized 
ARMA model was found to be suitable for 
generation of the Brahmaputra flow. Further 
validation and verification of the model using 
synthetic flows showed that the ARMA model 
could preserve the important short- and long-
term statistics of the Brahmaputra flow. The 

fitted model was used to generate 200 synthetic 
sequences, each of 50-year length, of the decadal 
Brahmaputra flow. These sequences were used 
in risk-based evaluation of performance of the 
proposed Brahmaputra barrage at Bahadurabad 
in meeting future water demand of the 
Brahmaputra barrage command area.
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